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Abstract. Climate change is increasing drought and fire activity in many fire-prone regions including the western USA 
and circumpolar boreal forest. These changes highlight the need for improved understanding of how multiple disturbances 
impact trees in these regions. Recent studies linking fire behaviour to plant ecophysiology have improved understanding of 
how fire affects tree function and mortality but have not investigated interactions between drought stress and fire. In this 
study, Larix occidentalis saplings were subjected to different levels of water stress followed by low-intensity surface fires 
in a controlled laboratory setting. Post-fire mortality, recovery and growth were monitored for up to 1 year post fire. 
Generally, increased pre-fire water stress resulted in decreased post-fire stem diameter (up to 5% lower) and height (up to 
19% lower) growth. However, severely water-stressed saplings whose foliage had senesced before the fires had lower 1-
year mortality (14%) and significantly greater post-fire bud densities than moderately stressed saplings that did not senesce 
(86% mortality). The mortality patterns suggest that water-stressed western larch saplings exposed to low-intensity 
wildfires, or prescribed fires conducted as part of forest management activities, may exhibit lower mortality rates if stress-
induced foliar senescence has occurred.
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Introduction

Drought stress has produced widespread tree mortality and

decreased growth in circumpolar boreal forests, including those
dominated by deciduous conifers in Eurasia and evergreen-
dominated forests in North America (Dulamsuren et al. 2010;

Beck et al. 2011; Peng et al. 2011). Larix, a genus composed of
deciduous needle-leaf gymnosperms, is a common component
of many fire-prone ecosystems in these regions and plays a
significant role in regional carbon cycle dynamics and surface

albedo (Gower and Richards 1990; Shuman et al. 2011). In
western North America, western larch (Larix occidentalisNutt.)
is a highly valued timber species, in part owing to its high growth

rate (Schmidt et al. 1976; Rehfeldt and Jaquish 2010). Along
with other regions, climate change is predicted to increase fre-
quency and severity of droughts and fires in North America

(Kharuk et al. 2008; Dai 2013; de Groot et al. 2013; Young et al.
2016), which could alter the biological range of productive
conifer species such as western larch (Rehfeldt and Jaquish

2010; Coops and Waring 2011; Smith et al. 2014), yielding
younger forest age class distributions (Bonan 2008) and land
cover type conversions (Shuman et al. 2011; Millar and
Stephenson 2015). However, the impacts and interaction of

multiple disturbances, such as drought and fire, on tree function,
mortality and post-fire recovery are poorly understood (Millar

and Stephenson 2015).
Independently, drought-induced water stress and fire can

substantially affect tree physiology, growth and mortality.

Water-stressed trees may close stomata for extended periods
to reduce cavitation in xylem tissues, leading to decreased
photosynthesis and increased reliance on non-structural carbo-
hydrate (NSC) stores (McDowell et al. 2011). If stomata remain

closed, trees utilise NSCs formaintenance respiration, as well as
osmotic and defence needs (McDowell et al. 2011; Adams et al.
2017). Under severe stress, deciduous trees can undergo leaf

senescence to conserve nutrients (Silla and Escudero 2006;
Marchin et al. 2010). Because water stress can decrease pools
of NSCs, drought can potentially increase fire-inducedmortality

by limiting carbon (C) available for post-fire recovery.
Fires can damage trees via multiple mechanisms involving

the transfer of heat to the roots, bole and crown (Michaletz and

Johnson 2007). Cell death (necrosis) or deformation in tree
tissues can severely impair C sequestration and vegetative bud
regeneration (Michaletz and Johnson 2006, 2008). Severe crown
damage (,80% crown scorch) reduces photosynthesis in
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remaining live foliage (Smith et al. 2016a, 2017) and is linked to
decreased nitrogen uptake and total NSCs in roots (Guo et al.

2004). Likewise, cell death or deformation in tree xylem and

phloemcan impairmovement ofwater, nutrients andC (Bär et al.
2018). Several studies have observed heat-induced cavitation in
xylem conduits of cut plant segments (Michaletz et al. 2012;

West et al. 2016), and non-functioning xylem in tree cross-
sections after wildfires (Balfour and Midgley 2006; Smith et al.
2016b), leading to the hypothesis that reduced xylem conductiv-

ity is an importantmechanism of fire-caused injury andmortality
(Balfour and Midgley 2006; Kavanagh et al. 2010).

Interactions and feedbacks between water stress and fire on
tree physiology are not well understood. Pre-fire climatic stress

can increase the probability that trees will die from fire-induced
damage in temperate (van Mantgem et al. 2013) and tropical
forests (Van Nieuwstadt and Sheil 2005; Brando et al. 2014).

Yet, van Mantgem et al. (2016) observed lower post-fire
mortality probability for some temperate conifers during a
subsequent severe drought compared with unburned trees,

which they attributed to lower stand densities and reduced
competition for resources in burned areas. In semicontrolled
nursery experiments, exposure to fire did not affect fine root

growth of water-stressedQuercus spp. saplings (Chiatante et al.
2005; Di Iorio et al. 2011). Although these studies provide
probabilistic evidence of interactions between drought and fire
effects, mechanistic research is needed to support accurate

predictions of ecosystem function.
Toxicological dose–response experiments provide a poten-

tial framework to study interactions of water stress and fire on

trees. Previous fire dose–response studies have used well-
watered saplings (Smith et al. 2016a, 2017; Sparks et al.

2016) or low-intensity prescribed fires that did not result in tree

mortality (Sparks et al. 2017). In the present study, western larch
saplings were subjected to water stress doses followed by a low-
intensity surface fire that in a prior study only caused limited
mortality in well-watered individuals (Sparks et al. 2016).

Sapling is defined as the growth stage following seedlings,
where seedlings are plants dependent on stored seed reserves.
We tested the hypothesis presented in Smith et al. (2017) that

pre-fire stress leads to increased mortality in fire-affected
saplings (Fig. 1). We further sought to test whether the degree
of pre-fire water stress amplifies the dose–response relationship;

i.e. trees with greater pre-fire water stress would exhibit
decreased growth, physiological function and survival post fire.

Methods

Larix saplings and growing conditions

Western larch (Larix occidentalis Nutt.) saplings (n¼ 28) were

grown in a climate-controlled greenhouse in Moscow, Idaho,
USA, through two growing seasons under natural light condi-
tions. The total number of saplings used in this experiment was

limited owing to the logistical limitations (nursery space and
cost) of growing and conditioning these trees to multiple levels
of water stress in a controlled nursery environment for this

amount of time. Average (�s.e.) sapling height was
96.1� 0.6 cm, with a height to crown base of 36.3� 0.3 cm.
Average diameter at root collar was 12.9� 0.4 mm. Over this
period, nutrient solutions (N : P :K) of Peters Professional

fertiliser were applied during the early (N : P : K, 10 : 30 : 20),

mid (N : P :K, 20 : 7 : 19), and late (N : P : K, 4 : 25 : 35) growing
season each year. Prior to the water stress and burn treatments,
saplings were re-potted in a soil medium mix consisting of 50%

perlite, 22.5% sphagnum peat moss, 22.5% vermiculite and
5% fine bark chips in 9.5-L pots and allowed to acclimate for
2.5 months. During this time, saplings were watered to field

capacity daily to minimise water stress.

Water stress and fire treatments

We randomly divided the saplings into four groups (n¼ 7) and

applied different treatments to each group. Each group was
conditioned to different predawn water potentials (Cpredawn):
control (no water stress or fire), low-water-stress (Cpredawn:
0 to �0.75 MPa), moderate-water-stress (Cpredawn: �1 to

�1.75 MPa) and severe-water-stress (Cpredawn: �2 to
�2.75 MPa). The low-water-stress Cpredawn range was chosen
tomatchCpredawn inwell-wateredLarix of similar size and age in

prior studies (Sparks et al. 2016; Smith et al. 2017). The severe-
water-stress Cpredawn range was chosen to match values of
Cpredawn in water-stressed Larix in prior studies where net pho-

tosynthesis and stomatal conductance approached zero (Higgins
et al. 1987), a common indicator of severe-drought stress
(Rodriguez-Dominguez et al. 2016; Martin-StPaul et al. 2017).

This Cpredawn range also encompassed measurements of Larix
saplings in a central Idaho forest during a severe drought year
(Cpredawn¼�2.2MPa) (K. V. Baker and D.M. Johnson, unpubl.
data) and coincided with stress-induced leaf senescence for the

severe-water-stress Larix in this study. The moderate-water-
stressCpredawn range was in between the low and severe ranges.
Water was withheld from each water stress group until the

desired shootCpredawn rangewas reached.During thewater stress
treatment period, fertiliser was also withheld from all saplings to
avoid confounding effects of the treatments. Low-water-stress

Larix were watered daily to keep Cpredawn above �0.75 MPa.
At the end of the water stress treatment period, each non-

control Larix group was subjected to a surface fire of the same
intensity. Following Smith et al. (2017) and Sparks et al. (2016),
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Fig. 1. Hypothesised shift of relationship between Larixmortality and fire

radiative energy (FRE) (dose–response curve) as tree water stress increases

(adapted from Smith et al. 2017). Dashed grey line indicates observed Larix

mortality in Smith et al. (2017).
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we determined the fuel load (kgm�2) of dry (,0% fuel moisture
content) Pinus monticola needles needed to produce a fire
radiative energy (FRE) ‘dose’ of ,0.4 MJ m�2. This dose was

chosen as Sparks et al. (2016) demonstrated that.66% of well-
watered Larix of similar age and size survived for 1 year at this
intensity level. Saplings in the same water stress group were

burned individually on the same day; low and moderate-stress
groups were burned 6 days after the severe-stress group. Post
burn, all saplings were immediately returned to the greenhouse

and watered to field capacity daily until foliar senescence
(,60 days post fire). Temperature and relative humidity were
recorded in the greenhouse facility every 30 min throughout the
course of the study using a model EL-21CFR-2-LCD tempera-

ture and humidity sensor (Lascar Electronics) and used to
calculate the vapour pressure deficit (VPD, kPa).

Sapling physiology, growth and mortality

Shoot water potential was measured at predawn every 2 days
starting at the beginning of each water stress treatment using a
Model 1505D pressure chamber (PMS Instruments Co.).

Additionally,Cpredawnwasmeasured on burn day (pre-burn) and
at 1, 4, 14, 30 days post fire; midday water potential (Cmidday)
was also acquired on burn day and at the same post-fire intervals.

Shoots of,10 cm in length were used forCpredawn andCmidday

measurements. Owing to the limited number of shoots on these
small saplings and the destructive nature of thesemeasurements,

three saplings from each group were randomly selected for
water potential measurement per sampling interval. As other
studies have shown that removal of large proportions of leaf area

does not substantially affect subsequent leaf water potential
(Reich et al. 1993; Pataki et al. 1998), we assumed that excising
shoots did not significantly change sapling water stress.

Light-saturated (1500 mmol m�2 s�1 photosynthetic photon

flux density) gas-exchange measurements were performed on
the same days asCpredawn using a LI-6400XT and 6400-05 LED
light source and broadleaf chamber (LI-COR Biosciences) on

five randomly selected plants in each water stress group. Five
needles from each sapling were used per measurement. Needle
area for each sample was measured with a LI-COR LI-3100C

leaf area meter and used to calculate net photosynthesis (A) and
stomatal conductance (gs) on leaf area basis. Height and
diameter-at-root-collar (DRC) were measured at the same
intervals as gas exchange. Relative growth measures (% devia-

tion from pretreatment) for DRC and height were calculated as:
[((growth – growthavgPreTreatment)/growthavgPreTreatment) � 100].
Crown scorch was visually estimated for each sapling following

Sparks et al. (2016). Bud emergence date, density (number of
buds per sapling) and general condition for each Larix sapling
were also recorded. We defined ‘immediate mortality’ as tree

death occurring from 1 to 60 (date of needle senescence) days
post fire, whereas ‘delayed mortality’ was defined as tree death
between 160 (date of needle emergence) and 365 days post fire.

Mortality was defined as the death of all foliage and inability to
regenerate shoots.

Data analysis

Arithmetic mean� s.e. is given throughout the paper. Physio-
logic and growth differences between treatment groups were

compared with ANOVA, and if significant (a¼ 0.05), a Tukey’s
honest significant difference test.

Results

Impacts of water stress on pre-burn physiology and growth

Cpredawn did not significantly differ (P. 0.05) between low-
water-stress and control Larix at any point during the study
(Fig. 2). Likewise, pre-fire physiology (Fig. 3a, b) and growth

(Fig. 3c, d) of the low-water-stress Larix was not different
(P. 0.05) from the control Larix. Moderate-water-stress Larix
took 7 days to reach the desiredCpredawn range (Fig. 2). During

these 7 days,Cpredawn, A and gs decreased by an average of 65%
from pre-water-stress levels (Figs 2, 3a, b). On burn day,
moderate-water-stress Larix Cpredawn was more negative

(P¼ 0.005) than both the control and low-water-stress groups.
Height and DRC continued to increase in the moderate-water-
stress group and did not differ (P. 0.05) from the control.
Severe-water-stress Larix took 12 days to reach the desired

Cpredawn range. On burn day, Cpredawn was more negative
(P¼ 0.005) than all other groups. Like the moderate-water-
stress larch,Cpredawn, A and gs decreased by an average of 60%

from pre-water-stress levels (Figs 2, 3a, b). During the last
4–5 days of the water stress period, foliage senesced sequen-
tially in the severe-water-stress treatment, with older green

foliage on each sapling turning yellow before younger foliage.
Height and DRC growth were less than all other groups during
this time but were not significantly different (P. 0.05) than the
control.

Impacts of water stress and fire on physiology, growth and
mortality

All burns had approximately the same duration (186� 0.6 s).
Mean flame height (18 cm; measured using still-frame video

data) was nearly half of the average height-to-crown (36.3 cm),
resulting in minimal live foliage combustion (,5% of crown)
across all water stress groups. There were no significant dif-

ferences (P¼ 0.337) in crown scorch between low- (85� 3%),
moderate- (87� 5%) and severe- (82� 9%) water-stress groups.
For all water stress groups,Cpredawn recovered to pre-fire levels
immediately after rewatering (within 1 day) and did not differ

(P. 0.05) from the control until all saplings started to senesce
(,30–40 days post fire) (Fig. 2). At 30 days post fire, Cpredawn

was more negative in the moderate-water-stress Larix

(P¼ 0.028) than in the control or severe-water-stress groups.
Likewise, Cmidday for all water stress groups recovered to pre-
fire levels immediately after rewatering (Fig. S1) and remained

less negative (P, 0.05) than control saplings until all saplings
started to senesce around early October. Minimum observed A

for all water stress groups occurred 1 day post fire. A and gs
recovered to control levels within 14 days post fire in the severe-

and low-water-stress groups, but A recovery took 30 days in the
moderate-stress group (Fig. 3a, b).

Post-fire DRC and height growth decreased with increasing

water stress, although groups did not differ significantly
(P. 0.05) (Fig. 3c, d). Generally, post-fire DRC and height
growth decreased or remained the same for the duration of the

experiment (Fig. 3c, d). Post-fire bud density was consistently
higher (P, 0.0001) in the severe-water-stress group than the
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low and moderate-stress groups (Fig. 4), with nearly a 3�
difference at the end of the growing season.

Immediate mortality (,60 days post fire) was greater in the
moderate-stress group (43%) than the severe-stress (14%) and
low-stress (0%) groups (Fig. 4). Likewise, delayed mortality

(160 to 365 days post fire) was also greater in the moderate-
stress group (86%) than the severe-stress (14%) and low-stress
(14%) groups. No control trees died during the experiment.

Discussion

The present study supports previous experiments of the same
fire intensity (0.4 MJ m�2) with similarly sized Larix occi-

dentalis where saplings experiencing minimal water stress

(Cpredawn.�0.4 MPa and Cmidday.�1.5 MPa) had low
mortality rates (,33%) up to 1 year post fire (Sparks et al.

2016). Likewise, observed patterns of post-fire growth reduc-

tions with increasing water stress agree with other studies where
drought and fire treatments significantly reduced above- and
below-ground growth in Quercus spp. seedlings compared with

control and drought-only seedlings (Chiatante et al. 2015).
The unexpected mortality patterns observed among the

different water stress groups indicate more complex dose–
response relationships between water stress, fire and physiology

than expected (Fig. 1). We hypothesise that the severe-water-
stress group displayed lower mortality than the moderate-water-
stress group because the severe-water-stress group were able to

use nutrients andC translocated from foliage to other tree tissues
during the pre-fire water-stress-induced foliar senescence.
Nutrient resorption during drought-induced senescence can

increase survival among deciduous plants (Munné-Bosch and
Alegre 2004) and deciduous trees benefit from nutrient resorp-
tion even under extreme drought conditions (Silla and Escudero
2006; Marchin et al. 2010). As all treatment groups experienced

a similar amount of crown scorch (Fig. 5), the severely water-
stressed trees may have had more resources available to survive

and produce buds post fire. Larix spp. are very efficient at
translocating nutrients from senescing needles to other tree
tissues (Carlyle and Malcolm 1986; Gower and Richards

1990). During foliar senescence in autumn, Larix occidentalis

has been observed to translocate ,87% of nitrogen and ,66%
of phosphorus from foliage (Gower et al. 1989). Larix spp. have

also been observed to have high resorption of NSC from
senescing needles (Kagawa et al. 2006). This hypothesis is
supported by the observed bud densities for the three water-

stress groups. Despite similar post-fire crown loss (,85%)
across all water-stress groups, severe-water-stress Larix had
nearly triple the density of buds 30 and 60 days post fire
compared with the low and moderate Larix (Fig. 4). Stored

carbohydrates are the C source for new needle formation in
deciduous trees such as Larix (Kagawa et al. 2006), and the bud
density observations suggest that the severe-water-stress Larix

had greater C reserves to regenerate foliage.
In addition to regenerating foliage, C is a critical input for

refilling embolised xylem conduits (Salleo et al. 2009; Zwie-

niecki and Holbrook 2009; Nardini et al. 2011). Repeated
embolism formation and repair, such as that likely experienced
by the moderate- and severe-water-stress groups pre-fire, could
have depleted C stores (McDowell et al. 2008) and decreased

cavitation resistance (e.g. cavitation fatigue – Hacke et al.

2001). As drying soil can limit refilling of embolisms (McDo-
well et al. 2011), it is likely that themoderate- and severe-water-

stress Larix had higher proportions of non-refilled conduits than
the low-water-stress Larix that were watered pre-fire. It is
possible that the fire exacerbated xylem cavitation in the

saplings with higher proportions of functioning, non-senesced
crown (low and moderate-water-stress Larix). Several studies
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have indicated that elevated VPD in the super-heated plume that
rises above the surface flames may be sufficient to induce

cavitation in tree canopy branches and foliage (Kavanagh
et al. 2010; West et al. 2016). However, translocation of
nutrients and C, either during senescence or during embolism

repair, requires functioning phloem (Nardini et al. 2011;
Hartmann et al. 2013). Translocation of nutrients and C under
severe-water-stress conditions can be significantly impaired by

decreased phloem transport (Sala et al. 2010). For example,
Hartmann et al. (2013) observed that water-stressed Norway
spruce (Picea abies) saplings had higher NSC concentrations in

all tissues than non-water-stressed saplings at mortality, indi-
cating that reduced hydraulic function impaired mobilisation of
NSC. Thus, while drought-induced senescence provides a
mechanism that preserves nutrients and C for survival and

post-disturbance bud growth, severe drought can also constrain
mobilisation and utilisation of these resources.

We acknowledge that because our experiment lacked

unburned water-stress treatment groups, we are assuming the
observed physiological, growth and mortality differences
between the drought-stress treatments were created by the fire

treatments. However, previous studies provide clues to help
decouple the effects of water stress and fire. Vance and Running
(1985) subjected smaller Larix occidentalis (,15 cm in height)
to water stress treatments and found that Larix withCpredawn of

�1.5 MPa were able to survive the drought treatment. The
presence of stress-induced leaf senescence was not noted. This
finding suggests that the high mortality observed in the moder-

ate-water-stress Larix in the present study (Cpredawn: �1 to
�1.75 MPa) was the result of the combined effects of the
drought and fire treatments.

Future research needs

Our observations suggest an intriguing possibility where Larix
that senesce and translocate resources pre-fire may experience

lower mortality in a subsequent low-intensity fire. Testing this
hypothesis would require measuring translocation to assess
whether senescing foliage supplies sufficient nutrients (NSC, N,
P) for bud growth; xylem conductivity measurements to quan-

tify whether heat-induced cavitation and cell deformation
observed in water-bath studies (e.g. Michaletz et al. 2012; West
et al. 2016; Bär et al. 2018) occurs under natural fire conditions;

and gas-exchange measurements to gauge stomatal activity for
green and senesced needles at the time of burning.

It is important to note that the mortality hypothesis presented

in the present study may not translate to larger trees. For
example, drought-induced crown dieback in larger trees often
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occurs at the periphery of the tree crown (Rood et al. 2000;
Sperry et al. 2002; Zhang et al. 2017), rather than sequential
senescence observed in the current study, where older leaves

senesce first to supply nutrients to younger leaves and shoots
(Munné-Bosch and Alegre 2004). As low-intensity fires typi-
cally scorch tree crowns from the bottomup, senescing foliage at

the periphery of a large tree crownmay not provide the post-fire
recovery advantage hypothesised for saplings. In fact, there is
evidence from temperate (vanMantgem et al. 2013) and tropical
forests (VanNieuwstadt and Sheil 2005; Brando et al. 2014) that

large trees with greater pre-fire water stress are more susceptible
to fire-induced mortality. Current hypotheses for fire-induced
mortality of larger trees, such as xylem dysfunction (Michaletz

2018), have been demonstrated on excised branches in labora-
tory water-bath experiments (Michaletz et al. 2012; West et al.
2016; Bär et al. 2018). In terms of natural forest fires, there is

evidence that fires impair large-tree xylem hydraulics (Smith
2015; Smith et al. 2016b; Bär et al. 2018) and evidence that fires
do not affect xylem hydraulics (Battipaglia et al. 2016; Thomp-
son et al. 2017). Experiments that incorporate a range of tree

sizes and tree-scale treatments (Sparks et al. 2017) and physiol-
ogymeasurements are needed for an improved understanding of
size-dependent mortality (McDowell et al. 2018).

Conclusions

We observed that western larch under greater pre-fire water
stress exhibit decreased growth after a low-intensity surface fire.
However, the unexpected bud density and mortality patterns
observed among the different water stress groups indicate that

interactions between water stress, fire and deciduous tree
physiology are more complex than a linear dose–response
relationship. The mortality patterns observed in this study sug-

gest that water-stressed western larch saplings exposed to low-
intensity wildfires, or prescribed fires conducted as part of forest
management activities, may exhibit lower mortality rates if

stress-induced foliar senescence has occurred. Although this
research improves understanding of drought–fire interaction
impacts on saplings, more research is needed to assess whether
mortality patterns change with increasing tree size.
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Cpredawn. Yellow, senescing needles are clearly visible in the severe-water-stress photo on burn day

(bottom row, ‘0’ day) aswell as differences in bud density between the groups at 30 and 60 days post fire.
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