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Abstract
There is a lack of information regarding critical habitat for many marine species, including
the bearded seal, an important subsistence species for the indigenous residents of Bering
Strait. An objective approach to modeling marine mammal habitadlar regions using
Traditional Ecological Knowledge (TEK) of Alaskan Native hunters is develtpaddress
this gap The approach substitutes lifetime and cigsserational knowledge of subsistence
hunters and their harvest data for observationaMeuge gained from formal scientific
field surveys of marine mammal sightings. TEK information for summer and fall seasons
was transformed to seal presence/absence and used to train Classification Tree Analyses
(CTA) of environmental predictor variables predict suitable habitat for bearded seal in
Bering Strait. A Kappa of 0.883 was achieved for habitat classifications. The TEK
information used is spatially restricted, but provides a viable, replicable alternative when

Western scientific observationddta is limited or nomxistent.
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Chapter 1: Project Background

Humans have been active participants in the changing Arctic environment for
thousands of years. During the long months of winter, ice often caps the ssagdhe
vast region. When the sun returns to Arctic skies, it brings gradual warming which is
accompanied by annual thinning and disappearance of sea ice. The sun eventually dips
below the horizon as another winter approaches, chilling the envirobaento its
familiar frozen state. Throughout these annual changes, human hunters venture out onto the
pack ice and fragmented ice floes, carrying with them skills and knowledge passed down
from time immemorial. Knowing when and where to hunt marine masis not for sport
or trophies, but instead for subsistence and survival. Relying on marine mammals for
subsistence may be jeopardized as the Arctic experiences fundamental shifts in temperature
regimes that in turn may result in shifting patterns diitad For over a decade, MODIS
Aqua has stood sentinel over the changing Arctic seas, recording the growth and
diminishment of the sea ice and other characteristics of the marine environment and
producing a collection of digital imagery of changing ctinds. The temporal and spatial
information recorded from space may be combined with information obtained by hunters
who have accumulated a lifetime of experiences observing and pursuing marine mammals
across Arctic marine environments; this pairing dbimation sources may be a step toward

better understanding Arctic marine mammal habitat characteristics.

Global climate model projections call for a warming Arctic and declining sea ice
throughout the Z1Century(Maslowski et al. 2012 Arctic sea ice is a dynamic polar
phenomenon, covering approximately 15 million’kahits March maximum each year, and

shrinking to approximately 7 million kfrby Septembefkwok and Untersteiner 2011 The



September minimum sea ice extent decreased by an average linear rate of 7400 km
between 1972009, and the March maximum extent is projecteoet@5% less by 2050
and 60% less by 2100, with the4free period that currently consists of 5.5 months on
average projected to increase to a median of 8.5 m{dthglas 201 Arctic
temperatures up to 2.9 degrees C warmer when comparing th®200dan to the 1951
2000 mearfWalsh et al. 201laccompany an overall loss of 1.59m of September sea ice
thickness when comparing 2003 to 19581976 (Kwok and Rothrock 2009 The majority
of sea ice loss occurred on the Pacific side of the Afdteng et al. 2012 and one Arctic

subregion, the Bering Straits of particular concern for a number of interested parties.

Commercial interests identify the Bering Strait as an important route for trade and
exploration for natural resourcéBrigham and Smith 200&ouncil 2009 Kitagawa 2008
Stephenson et al. 20t 3the value of oil reserves of the Outer Continental Shelf in the
Beaufort and Chukchi Seas is estimated at $81B3billion, and the Bering Strait is the
passageway to markets in Asia, NoMmerica, and EuropgConley and Pumphrey 2013
The United States Coast Guard has estimated that the number of alepsitig the Bering
Strait increased from 245 in 2008 to more than 400 in 20bhley and Pumphrey 2013
This signifiant increase in ship traffic and general utilization of Bering Strait has
considerable ramifications, and the economic interests of outsiders may conflict with the
subsistence economy of the indigenous residents who live and hunt there. This subsistence
economy revolves around a complex marine mammal population that inhabits the Bering
Strait(Ackerman 1988Ahmasuk et al. 20Q8Huntington and Sookiayak 200®/olfe and

Walker 1987.



To help guide complex, multinational policy discussions that will shape the future of
the Bering Strait, a need exists for enhanced knowledge and characterization of marine
mammal habitat in order to help plan for the @wation of these animals as climaaad
humaninduced changes occur across the area. Marine spatial planning efforts incorporate
physical information about habitats within the marine environment, characteristics of marine
species found within those h#dis, and humans who interact with the marine environment
and its resourcg¥Kaplan et al. 201,(Katsanevakis et al. 2011 Geospatial analysis and
mapping techniques have been used for various threatened and endangered marine species
such as musse(8Vilson et al. 201}, turtles(Schofield et al. 203 and monk seals
(Schmelzer 2000 aid in understanding environmental conditions within habitats and to

help guide policy decisions for managing environmental and human pressures upds. habita

The increasing availability of remotegensednd otheenvironmental data has
allowed ecologists to develop spatiadiyplicit maps of habitat suitability and species
distributions using only a limited number of field observations by modeling relationships
between species observations and predictor varighieellino et al. 2012Boyd and
Foody 2011 Dobrowski et al. 200&Elith and Leathwick 2009Guisan and Thuiller 2005
Miller 2010). Terrestrial habitat classification at a variety of spatial scales using multiple
sources of spatial data is a common application of remotengearsgalysigJanssen et al.
199Q Lu and Weng 200/Piwowar and LeDrew 199®Rautainen et al. 2010Treitz and
Howarth 200Q0Vogelmann et al. 1998 While satellite data products have been used to
study marine environmental phenomena such as sea surface temperature (SST),
photosyntheticallyactive radiation, suspended particulate matter, chlorophyll/plankton

concentrations, and sea ice ext@rdlley et al. 201), marine habitat classification using



remotelysensed data lags somewhat behind terrestrial apphsaThis is due in part to a
smaller number of dedicated sensors and fewer observations over time; the number of
images and data products has been increasing since the late 1990s with the introduction of
sensors designed for marine environmental apgpiics(McClain 2009. One challenge in
developing these models for netationary, migratory species in remote regions (like the
Arctic) is the lack ofriaining and validation data derived from field observations of animal

numbers, locations, and movement patterns.

The bearded sedEfignathus barbatusis a marine mammal inhabiting the Bering
Strait that is highlydependent on pack and sea ice and ivaréa subsistence resource for
Alaskan Native hunter@awerak 2013aKawerak 2013pwith a wide range of traditional
uses(Burns 198). The bearded seal is a pragztspecies under the Marine Mammal
Protection Act and has recently been |isted
Act (NMFS 2013. Bearded seals are found throughout the Arctic region and prefer to
remain in close proximity to broken sea ice, preferentially hawdirtgpn ice rather than
shore, and they tend to avoid massive shorefast ice fBickss 198). Adult bearded seals
are primarily benthi¢eeders, subsisting on fish, invertebrates, and other battesiing
prey items found at depths of up to 500m or less, but more typically at depths or 200m or
less(Cameron et al. 201@uakenbush et al. 20L1Adults associated with the Bering Strait
tend to migrate north and south as the pack ice shrinks northward in warmer months and
expands southward in colder months, moving with the active ice edge that produces
fractures, areas of thin ice, and atfesatures that provide haalt surfaces and protection
from predator¢Cameron et al. 20)0 Maps of bearded seal range or habitat typically

encompass the majority of the Bering and Chukchi Seas, and the entirety of the Bering Strait



(Burns 1981 Cameron et al. 2010NMFS 2009. Bearded seals live in remote areas with
environmental conditions that make obtaghobservations difficult, and these areas also

span international boundaries between nations that do not always cooperate well in scientific
venturegCameron et al. 2030 Certain areas within the Bering Strait region were

historically favored by bearded seal hunters, such as locations near Shishmaref,rtfus Solo
River, and Port Clarence on land, and Sledge and King Islands of{steyrd 98}, 1992,

but anthropadgical records are not clear abaulty those locations were favored by the

bearded seals. Likewise, thelaaeological recordoes noexplainwhy beardd seal

remains were found iany givenlocation, since they may have been hunted some distance

away from an excavation si(®swalt 1967.

Attempts to observe marine mammal ranges and activities in the region are typically
limited to the window of relatively good weather andfi@e conditions experienced in the
summer months, and a population estimate is difficult to determine acc\zaehgeron et
al. 2010; recent work to estimate populationslirdes helicopter survey observations of
hauledout ice seal§Ver Hoef et al. 2014 An alternative to standard ecological
approaches that is gaining traction and is drawn from the social sciences is the integration of
Traditional Ecol ogi cal Knowl edge (TEK). TEI
knowledge, practice, and belief, evolving by adaptive processes and handed down through
generations by cultural transmission, about the relationship of living beings (including
humans) with one anot hdBerkes aetdl. 2000 The TEKIlofe i r envi
Alaskan Native subsistence hunters includes information from those who have observed,
tracked, and harvested seals in the Bering Strait regiwinywho have passed down that

knowledge over successive generatihckerman 1998Dumond 2000Giddings 1961



Modern subsistence hunters haveested interest in more completely understanding the
ecology of their prey, and hunters in the Bering Strait region have been cooperating with
Western scientists, sharing geospatial information about hunting traditions and locations that
can potentiallybe integrated with Western scientific geospatial data analgsednig and
MayerSchonberger 200@adamus 2013Huntington 2000Moller et al. 2004Whyte

2013.

Bering Strait has been occupied for at least 4,000 yéakerman 1998by humans
whose culture established traditions still practiced in the modern era, such as hunting various
marine mammals faneat, oil, and other subsistence and survival materials. Nearly 2,700
pounds of marine mammals are consumeauallya s f ood by the |l nupiat,
Lawrence Island Yupik households in the Bering Strait region, and sea mammal foods have
tremendousgultural importancé Ahmasuk et al. 2008 adamus 2013 Longterm climatic
change may result in shifting or lost habitat, which could influence marine mammal
population distributions as well as the communities that depend upor{@rebmeier
2012 Moore and Huntington 2008even though there is no documentation of climate
change related shifts in migration @aitts of marine mammals in the existing scientific
record(Laidre et al. 2008 Marine mammal populations in Bering Strait may experience a
variety of stressors related to health impacts of climate ch@uyek et al. 2008
increasing underwater resource exploration and surface vessel(®affkinger and Jeffries

1988 Stafford 2013, and commercial fishing activitigsluntington 2009

This study focuses on developing and proofing a method to utilize remotely sensed
environmental data and training data derived from TEK to create habitat suitability maps for

marine mammals in polar environments. Sfeally, the objectives include: (1) identifying



an approach for converting TEK data to training and validation points for classification
processes; (2) determining which predictor variables contribute the most information to the
classification proces$3) ascertaining whether time series analysis outputs improve the
accuracy of the classification process; and (4) developing habitat suitability maps that can

inform policy discussion in the Bering Strait.

Chapter 2: Methods

2.1. Study Area

Establishing a scene model describing the study area is important in geospatial
research applicatior(Strahler et al. 1986NVoodcock and Strahler 1987The area of the
current sudy encompasses the Bering Strait region and areas to its north and south between
159175 degrees West longitude and betwee®®6 degrees North latitude (Figure 1).
The area typically experiences the formation and growth of sea ice beginning inrDctobe
generally centered along the coast, with ice thickening and expanding as temperatures drop
and prevailing winds advect sea ice southward; the sea ice expands to maximum coverage
by late March and begins a process of melt and decay until the oceaimisxqysed by
late JungPease et al. 1982 Three major rivers (Yukon, Kobuk, Noatak) and numerous
smaller rivers and streams drain much of Interior Alaska into the Bering coastal zone. With
northward ocean currents mixing Pacific @celerived water with freshwater and nutrient
runoff along the coast, combined with prevailing offshore winds of the Polar Easterlies,
coastal upwelling processes help contribute to a bloom of plankton productivity during ice

diminished and icdree monthgLoughlin et al. 1999



2.2. Predictor Variables

For an initial, exploratory study, spatial data were obtained for a collection of
environmental variables in Bering Strait. Some of the variables are known by Western
science to be associated with bearded seals (e.g., bathymetry, sea ice), others are
recommended by indigenous hunters (e.g., distances from shore or anadramous fish streams
(Kawerak 2013})), while others are assumed to be of relative importance (e.g., bathymetric
slope, dstances from shore or anadramous fish streams, sea surface temperature, chlorophyll
concentration, etc.) for characterizing the habitat of bearded(Betalsan and Costa 2010

Environmental predictor variables used in this study are listed in Table 1.

2.2.1.MODISAqua

Given such a large study area, and the maritime environmental focus, selecting a
sensor thaprovides the best compromise between temporal and spatial resolution and
variety of data products is criticéhinn 1998Phinn et al. 2008 The Moderate Resolution
Imaging Spectroradiomet@ODIS) instrument on board the NASA Aqua satellite
platform provides neadaily global imaging data at resolutions ranging from 250 m to 1 km,
using 36 spectral bands, resulting in many different raster products output by four major
NASA research group®NASA 2013. Thedata products selected from NASA research
groups were &lay composites produced natively at, or resampled to, a spatial resolution of
4 km where each grid cell value represents the maximum value observed for the cell over
each 8day time period, for the ii-June through October study period from 2Q03.2.

The midyear window corresponds to the generallyfiee (or broken ice floes) period from

Julian Day 137 to Julian Day 280. From the Land Products ghttgsy/Ilpdaac.usgs.gqy/



surface reflectaze (SRF; MODOQ9) data for Bands 4, 3, and 1 were acquired for tiles 9,2;

10,2; 11,2; and 12,2. Sea ice extent data for the Northern Hemisphere (SI; MOD29) was
provided by the National Snow and Ice Data Ceritgpy//nsidc.orgl. The Ocean Color

group (htp://oceancolor.gsfc.nasa.gov) provided global scale data for chlor@phyll

concentration as a proxy for prey (CHL; MOD21), photosynthetically active and

instantaneous photosynthetically active radiation (PAR, IPAR; MOD22), suspended solids

as a measure tdirbidity (PIC; MOD23), and sea surface temperature (SST; MOD28). Data
voids in the Ocean Color products were infil

climatology layers.

2.2.2.0ther SpatialData

The Alaska Geospatial Clearinghoysdaska n.d) provided vector data for the
coastline at mean sea level (MSL) and hydrographynfgor rivers and river mouth
locations. Distance grids with 4 km cell sizes were generated using Euclidean distances
from the coastline vectors. A digital elevation model (DEM) containing terrestrial
elevations above MSL and bathymetry below MSL wasionbthfrom the SRTM 30 Plus

repository(Becker et al. 2009 slope degrees was generated from the DEM.

2.3. Response Variables

Although presence/absence data are preferred for species distribution and habitat
suitability modeling, presenaenly data has been successfullyizgid (Brotons et al. 2004
Hirzel et al. 2006Sequeira et al. 2012 TEK data was acquired from expert hunters and
elders living in Bering Strait villages and includes geospatial information about the density

of bearded seals across space and important hunting and search areas, including static and
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dynamic environmentalharacteristics ahose areas across each sedisahwere

considered important for hunting succésawerak 2013}y participants were asked to

exclude locations that were no longensidered productiv@xcluding historical hunting

sites) and to include only thodecations that were considered to be productive with regard

to bearded seal hunting success. TEK information was collected from indigenous hunters
through interviews and focus groups, recorded in qualitative verbal responses and as
locations marked on naaal charts, topographic maps, and other map products. TEK data
encompassing the summer and fall seasons were extracted as both Presence and Absence
data based on the assumption that the experiences and traditional knowledge of these hunters
would functon as proxies (Figure 2). TEK polygons that indicated both high concentrations
and a high probability of successful hunting were categorized as Good Habitat or Presence.
The TEK data was presenoaly data, but areas outside of those marked by huntgxsoas

hunting or habitat area were categorized and treated as a type of pseudoabsence data for the

purpose of this study.

Pseudoabsence data can be used in ecological studies when there is no data for true
absences within a study ar&equeira et al. 2012Visz and Guisan 2009 Including
absence (or pseudoabsence) data has been f ol
predictions compared to presermdy data(Brotons et al. 2004 Given that the entire
study area is within the diving range of bearded seal and potentially habitat, a simple
rancom point selection process was used within the TEK polygons that were categorized as
AbsencgStokland et al. 2011 This differs smewhat from applications in terrestrial

environments where habitat edges or ecotones are mor&nealh and can be more readily
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defined; for bearded seal, known edges are-dftgosuch as the continental shelf where

depths exceed their diving range, aodh depths do not exist within Bering Strait.

Training and validation points were randorgignerated within the Presence and
Absence polygons at a minimum distance of 4 km from each other to match the predictor
variable cell size. One of the challengésamdom point generation methods is identifying
the optimal number of training and validation points and the minimum distance between
points. To find the optimal number, we conducted multiple classifications using
increasingly dense networks of pointonaer to examine the sensitivity of classification
processes to the TEK data. The lowasisity trial data set generated included 30 training
and 30 validation points (60 points total at the first level), and each subsequent trial data set
progressed igize at 66point increments for each new classification until reaching the final
trial at 450 points for both training and validation (900 points total at the final level). Each
trial evenly split the training and validation points between the two clasgg, at the 60
point level, 15 random training points were contributed by the Presence set with 15 random
training points from the Absence set, and likewise with the validation points to reach a total
of 60 points. The sampling universe was 1,222matkecells for Presence and 16,287 for

Absence.

2 4 Data Extent andPre-Processing

The greatest number of variables sharing a common projection, datum, and coarsest
resolution came from the Ocean Color group; the Plate Caeema 2007Snyder 1998
became the target projection for all other geospatial data. Data layers not already in the

Plate Caree (an equidistant rectangular or geographic projection) were reprojected to that
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coordinate system, and all finscaled dta were resampled to 4.1666667 km cell size. All

data | ayers were subset to the study areabs

Seasonal trend analyses (STA) were conducted on the time series MODIS products
using ThedlSe n 6 s E st iparanetacrapmach that éitslines between all possible
pairs of geographically coincident points in a time series for any given variable, and
indicates whether the variable is increasing or decreasing in value and strength over time.
TheilrFSends Est i manalygsis tedhriquea able o ithstand up to 29% missing
data and still produce reliable outp(iEastman et al. 20Q0&astman et al. 201Fernandes
and Leblanc 2009\eeti and Eastman 20L1Among its outputs are the mean of the data
array, the median of all the slopes between pairwise coincident points throughout the time
series, and the medidor all of the intercepts in each time series. Prior to conducting-Theil
Sen, the time series data were inspected, and although missing data were detected in the
nonSST data across the study area, only in smaller, nearshore locations did it apgroach th
29% threshold.In order to be consistent with the SST datach has no data voids
(Campbell et al. 1995missing values in other time serigata were infilled usin@cean
Colordecadal climatologiesTheil-Sen slope anthtercept values for each time series
predictor variable were calculated and used as input layers during the classification process;
these are dynamic indicators of environmental processes that increase predictive and

explanatory power of habitat modeli(gyustin 2003.

The time series predictor data was selected to match the TEK data seasonality of
summer and fall. The imagery and products represented apisnefrom May to October
(Julian Day 137280) with 8day composite images and products. The dates of the time

series data were modified in the analysis software to simulate a year rather than a seasonal
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portion of a year; for most variables, JD 144 insagere recoded as JD 23, JD 152 became
JD 46, and so forth until JD 172 became JD 355. SST data were recoded such that JD 144
became JD 14, and JD 180 became JD 364. Anomalies in several OC data sets resulted in

removing JD 180 data layers from STA arsaly.

2.5Analysis

To develop a habitat suitability map, Classification Tree Analysis (CTA) was
conductedDe'Ath and Fabribius 200Q.oh 2011 Miller and Franklin 200Rusing GINI
splitting rules with 10 percent prunifigambon et al. 2006 The major benefit of
employing CTA, besides beingngnar ametri c, 1 s its transparen
explicitly identifies which input layers (predictor variables) contribute to any particular
classification outpt, and to which degree each input layer influenced the classification
output(Lawrence and Wrigh200J). In an exploratory study, it is important that the
contributing variables are identified and ki
enshroud contributing variables (such as fdfhi
only revealhe classification outpyQiu and Jensen 20P4Two major groupings of
predictor variables were processed with CTA analyses r@npresented iffable 2; the
Theil-Sen (TS) grouiincluded the distance, bathymetry, OC climatologies and STA input
layers, while the NoiTheil-Sen (NTS)mitted the STA input layer&appa statistics

(Congalton 200)Llwere calculated for each CTA classification.

Chapter 3: Results

Test classifications indicated that the distance layers were a major driver of the

classification results, constricthbyifBK t he ou't
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polygons. This was due to the TEK data being concentrated near coastal areas and mouths

of rivers joining the waters of the Bering Strait and in areas closer to the settlements where
hunters engage in subsistence hunting activities. This cdimstrweas addressed by

establishing a second CTA batch for each group that removed the distanceskayers (
distance;-SD). The secondary batch indicated that bathymetry was themmxttant

environmental factor A third CTA batch {SD-SB) removed théathymetry layers and only

used satellitelerived data products. Output layers from each individual CTA run classified
bearded seal habitatas 1and-hoa bi t at as O0; each batchos out

combined to construct model agreement mapaligations.

3.1 What is the optimal number of training and validation points to use in a classification?

Kappa values for each classification run are presented in Figure 4. The CTA kappas
from TS and NTS series converge at the-g8t level (240 traimg & 240 validation),
which may indicate the optimal point selection set for this study area and pixel size. The
highest kappa value for both TS and NTS (0.883) was achieved for the runs that included all

of the predictor variables for each series.

3.2 Whch predictor variables provide the most useful information for classification?

The frequency of input layer selection was summed from CTA output trees for each
of the classification runs at the 480int level, and is presented in Figure 5. For thelThei
Sen series of predictors, the TS Slope of MODIS B01 was selected five times, Bathymetric
Slope was selected three times, Chlorophyll OC Climatology was selected three times, and
11 predictors from the array were each selected once (Sea Ice TS Intacc8pdce TS

Slope were among the predictors selected once each). For thEhsib$en predictors,
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IPAR OC Climatology was selected six times, Bathymetric Slope and SST OC Climatology
were selected four times each, and Distance from Stream Outletsspenh8ed Solids were
each selected oncé\ covariance diagram depicting the relationships between predictor

variables is shown in Figure 3 (predictor band numbers and names are listed in Table 2).

3.3 Does the Thelben time series data improve the accyrafthe classification?

The frequency count data alone would seem to indicate that theSEretime series
predictors are quite useful, perhaps to the point of excluding th&meihSen predictors.
However, upon examining the output rasters fottvemain CTA series, it appears that the
NTS series produces similar results in areas that are nearer to the TEK presence training
polygons. Figure 6 shows the individual habitat cell selections for each of the predictor
variable sets, while Figure 7 skie composites of the TS and NTS series. Figure 8 is a
composite of both TS and NTS series; all of these figures draw from theof80CTA

analyses.

At the 480point level where Kappa converges for both experimental series, there is
variation in the nuibper of predictor variables (bands) selected, the number of cells selected
as suitable habitat, and the Kappa values for each CTA run. Table 3 shows that the TS
series selects more cells as suitable habitat than NTS, and both TS and NTS series have
maximumKappa values of 0.883 when using the full set of environmental predictors
assigned to each series. TI8D run for each series results in the greatest area selected as
habitat combined with the highest number of bands selected during CTA analysis, but fo
the TSSD run, it is also the lowest Kappa value. TB®-SB run for each series selects

less area as suitable habitat th&D, and the TS series has a higher Kappa value than the
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NTS series. Overall, using the TS series of environmental predicfpeargto improve
classification accuracy and the TS predictors also result in larger areas selected as suitable

habitat.

Chapter 4: Discussion

4.1 Does TEK functioas a reasonable proxy for observatiosalentific data?

Western scientific observationlimited in remote areas such as Bering Strait,
especially when observations are also constrained by short seasonal opportunities to
establish research posts and collect information. Existing maps of bearded seal habitat
(Burns 1981 Cameron et al. 2010NMFS 2009 essentially describe the spatial extent of
dept hs wi t hi n ocumentet divang chpacity, which incudes the entirety of

the Bering Strait and adjacent areas within the Bering and Chukchi Seas.

This study applies terrestrial habitat classification techniques to marine
environments, building on the foundation of TE#&ta provided by Native hunters. The
analyses selected subsets of the study area which are in turn subsets of established habitat
maps for bearded seal in Bering Strait; these subset areas have similar characteristics to
locations where bearded seal arewn to have been harvested in subsistence hunts or
locations where they were physically sighted (if not actually pursued by hunters). Using a
more expansive selection of environmental predictor variables has provided a glimpse at
portions of the Bering $ethat might be more important or critical habitat zones for bearded

seal populations within the more general habitat characteristic of maximum diving depth.
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4.2 What is the optimal number of training and validation points to use in a classification?

Thesensitivity analysis conducted in parallel with the CTA analysis showed a
convergence occurred at 480ints, split into 240 for training and 240 for validation. For
the area encompassed by the study, and the pixel resolution used for the input predictor
variables, 480 points appears to be an optimal number for classification. The areal extent of
the classifications also expanded at all sensitivity levels when the restrictive distance

environmental variables were removed from the input set.

A potentially confounding factor with this study is that the training (1,222) and
validation (16,287) cell sets account for nearly half of the marine study area (45,694) prior
to sampling. The Kappa statistic naturally improves and approaches 1.0 as the number of
training and validation points increases at each experimental CTA level as shown in Figure
4. Directly related to this factor is that the 4km pixel size aggregates and smooths
environmental information in each data layer for both temporal andemoporal gespatial
data. Predictor variables at finer spatial resolutions, such as 250m pixels, could provide
more insight into the importance of the various predictors within the complex environment

of Bering Strait.

The TEK information is also somewhat limitediis spatial extent (see Figure 2).
Although the TEK polygons used to generate training and validation points for presence
cover 19,552 krfof area in the Bering Strait, those locations are still relatively close to the
shorelines of the mainland andder islands. The TEK information itself acts as a

constraint on the habitat mapping since the nearshore environmental conditions are
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overrepresented compared to offshore environmental conditions as a function of where

hunters preferentially seek their pre

As noted earlier, there arendt cl ear dem:
habitat for bearded seal in Bering Strait within the standing literature, except that the seals
will not wander very far inland on dry land and have a maximum démpgh. The TEK
observations of Presence during the summer and fall seasons are very likely not capturing all
the locations within Bering Strait where bearded seals exist and forage; failure to detect the
presence of a species within a cell does not rtiearit is truly absent from that cell
(Brotons et al. 2004 These errors of omissig@ongalton and Green 200%r false
negdives, within the TEK data and subsequent habitat classification analyses result in

conservative predictions of bearded seal habitat in this study.

4.3 Which predictor variables provide the most information for classification?

Using the entire array of @dictor variables for CTA analyses resulted in the Fhell
Sen slope and intercept variables dominating when producing habitat maps. Removing
those variables and using only the NABroduced Ocean Color climatologies produced
habitat maps that were very slan to the ThedSenbased maps within the core of the study
area (i.e., the region encompassing Norton Sound and St. Lawrence Island); both the TS and
NTS environmental predictor series produced maps that matched the TEK data within the
study area corelf an analyst has access to software that can produce theSHmeil
predictor layers, the prediction results cover a broader geographic range; if th€drmeil
layers are not producible, however, the reduced set of predictor layers appears to give

compardle results near the core of the study area. Distance from shore and anadramous
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fish streams severely restricted the analyses, while bathymetric depth and slope contributed

to the results. Although identified in the ecological and ethnographic liteesdunee of the

Ai ce seal so, the analysis did not indicate t
important predictors. Bearded seal are most highly associated with sea ice during the winter

and spring seasons. Adults tend to migrate northwarddhrBering Strait in late spring

and early summer (Majune) during breakup and tend to return southward during late

summer and early fall (Septemb@ctober); adults are found in higher numbers in the area

around the narrowest portion of Bering Straitidgthese months. Young bearded seal tend

to be found near shore during the summer (JAungust). The band counts for TS and NTS

series are shown in Figure 5; the band numbers refer to the list of predictor variables shown

in Table 2.

4.4 |s the Time Skxs data useful for the classification analysis?

The TS predictor set provides greater predicted habitat than the NTS predictor set at
each of the three levels of analysis; the TS base level results in 3.4% more predicted habitat,
the SD level results in1.8% more, and the SBB level results in 37.2% more. The
increased predicted habitat tends to occur further from the study area core, where the TEK
presence polygons are located; the TS series appears to select more pixels in locations
farther north irthe Chukchi Sea and farther south in the Bering Sea. The NTS approach
provides habitat selections similar to the TS selections in areas with closer proximity to the
TEK polygons. Thei#Sen may be indicating areas of interest that could be more fully
investigated at a later date with expanded predictor variable sets. A tradeoff may exist in
terms of resources required for TS and NTS data; preparing NTS data may take a few days

and select smaller areas as habitat, whereas a lengthy time resolution &a Tty take
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several weeks or months to geeocess prior to conducting analysis and select larger areas

as habitat.
4.5 Why isnd6t sea ice selected as a primary
Analysis revealed a conundrum, in that ¢t

spedes) did not appear to be associated with the sea ice predictor layers. Bearded seals are
known to prefer ice floes as platforms for diving and hauting and will preferentially

select sea ice over other types of solid coastal features (rock outizapkes, etc.). Adult
bearded seals tend to migrate northward through the study area during late spring (May
June) and tend to migrate southward through the study area during late summer and early
fall (SeptembeOctober), while young bearded seals temdeimain closer to shore. With

ice floe surfaces diminishing during the summer, bearded seals wibbtah islands and

coastal land surfaces.

The environmental predictor selected most often in the TS array was derived from
MODIS Aqua Band 01, which is sensitive to the red portion of the electromagnetic
spectrum. This may be due to associations of red algal communities that exist in snow and
ice structuregTakeuchi 2013Takeuchi et al. 20Q6along marine shallows that get scraped
by sea ice masséldeine 1989, and perhaps in the upper pelagic layers as sea ice
decomposes. Inthe NTS array, the predictor most often selected was derived from MODIS
Aqua IPAR product, which could alée detecting red reflectance in areas rich in snow, ice,
and decomposing ice due to red algal blooms. Although sea ice itself did not appear to be
important as an environmental habitat predictor, perhaps the algal features of the ice

influenced the seldion of predictors sensitive to 645 nm. It would be interesting to
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determine if these predictors were still selected if the spatial resolution of the input layers

was increased from 4km to 1km or higher.

Chapter 5: Conclusion

This study applied analysischniques derived for use in terrestrial environments and
has discovered that they are potentially quite useful in marine environments. This synthesis
of indigenous knowledge and Western science demonstrates that the Traditional Ecological
Knowledge of Mitive hunters can be transformed into digital training and validation
information and effectively used in geospatial modeling of marine mammal habitat. In vast
areas traversed by few scientists, the lifetime and generational knowledge of expert hunters
ard foragers can be substituted for, and used instead of, traditional scientific areal and site
survey information; the TEK of indigenous hunter and gatherers provides an often untapped

and rich resource of environmental information.

If this approach is expred in the future, there are several other sources of data that
might improve and refine the results of habitat modeling. Ocean current direction and
velocity information throughout the Bering Strait could be very useful, both at the surface
and at dept. Prey species data layers could be very beneficial, especially if the data
included not only spatial location but also variation in time in order to establish relationships
to the satellite time series data. Acquiring Level 2 MODIS imagery and custa@sging
it to produce Level 3 data may provide better control over filling data gaps that occur in the
MODIS-based TheiSen analyses. Another data source would be TEK information from
the Chukchi, inhabitants of the Western coast of the Bering S@sagrall, however, this

effort demonstrates an objective, replicable methodological approach that can be applied in
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the absence of Western science, particularly when time and resources are limited and policy

decisions rely on the best available science.
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Figure 1. Map of Bering Strait study area.
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TEK: Presence and Absence
: | ) N

Figure 2. TEK Presence and Absence. Presence data is indicated by hatching, including some land surfaces
where seals were present in rivers. Absence data is indicated by the open polygon extending throughout
NortonSound and Bering Strait.



Correlation Matrix For Bearded Seal Predictor Variable
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Theil-Sen (TS) CTA Kappa Values
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Figure 4. CTA Kappa values for TS and NTS analyses. Kappa statistic values are plotted eaxieeand
the number of training and validation points for each trial are plotted on-thésXy increments of 60.
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Theil-Sen (TS) Band Count at 480-Point Level
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Non-Theil-Sen (NTS) Band Count at 480-Point Level
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Figure 5. Band count histogram at 48@int level. The count indicates how many times a particular band was
selected within each of the six CTA batches conducted with 240 Training and 240 Validation points.
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(d) (e) )

Figure6. Initial habitat suitability maps. Theen maps: (a) all available inputs; flans distancg(c) sans distancesans
bathymetry NonTheil-Sen maps: (d) all inputs except for Th8&n time series layers; (8ns distancgf) sans distance
sans batimetry All dark values are selected as bearded seal habitat for each predictor variable combination.
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Bearded Seal Suitable Habitat: TS Composite Map Bearded Seal Suitable Habitat: NTS Composite Map

TS Habitat Agreement NTS Habitat Agreement
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Figure 7 Habitat suitability maps for the TS and NTS analysis series. The numbers 1, 2ndicdt® how many models
within either the TS or NTS series selected a given pixel location as suitable habitat. In areas close to the TEKataain
polygons, NTS data are finding similar patterns to the TS data.
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Figure 8 Composite map showingdtagreement between the six habitat suitability output rasters at the 480
point modeling level.



