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Abstract 

 

In the Mediterranean ecosystems of coastal California, wildfire is a common disturbance that 

can significantly alter vegetation in watersheds that transport sediment and nutrients to the 

adjacent nearshore oceanic environment. We assess the impact of two wildfires that burned in 

2008 on land cover and to the nearshore environment along the Big Sur coast in central 

California. We created a multi-year land cover dataset to assess changes to coastal watersheds 

as a result of fire. This land cover dataset was then used to model changes in nonpoint source 

pollutants transported to the nearshore environment. Results indicate post-fire increases in 

percent export compared to pre-fire years, and also link wildfire severity to specific land 

cover changes that subsequently increase exports of pollutants and sediment to the nearshore 

environment. This approach is replicable across watersheds and also provides a framework for 

including the nearshore environment as resource worth protecting for terrestrial land 

management involving wildfire, including suppression, thinning, and other activities that alter 

land cover at a landscape scale.  
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Chapter 1: Using a decision tree to create a historical multi-year land cover 

classification 

 

Abstract 

 

Land cover change impacts ecosystem function across the globe and the use of land 

cover data is vital in the detection of these changes over time. However, most available land 

cover products, such as the National Land Cover Dataset (NLCD), are produced infrequently. 

The most recent NLCD at the time of this research was produced in 2006, and may not 

adequately reflect the impact of land cover changes that have occurred since. Therefore, there 

is a need for the classification of historical imagery through replicable methods.  While it is 

possible to collect field data coinciding with current or future Landsat acquisitions, it is 

impossible to collect data for previous years, thus very few studies have focused on the 

classification of historical imagery. Using a single year of field reference and multi-year aerial 

photography data we applied a simple decision tree classifier to accurately classify historic 

satellite images and produced maps of land cover to incorporate the effects of 2008 wildfires. 

Overall accuracy ranged from 76 to 90 percent and was assessed using conventional error 

matrices and a spatial representation of accuracy. 

 

1. Introduction 

 

Land cover change impacts ecosystem function across the globe (Lambin et al. 2001), 

and disturbance is a major driver of land cover change which creates heterogeneous 

landscapes (Turner 1989). Large infrequent disturbances, such as wildfires, are an essential 

component in many ecosystems but have the potential to produce unexpected changes (Turner 



2 

 

& Dale 1998), especially when coupled with other impacts such as a changing climate (Dale 

et al. 2001). Wildfires burn with varying degrees of severity which affects vegetation 

succession (Epting, Verbyla & Sorbel 2005), land management efforts (Patterson & Yool 

1998), and the potential for increased erosion and flooding (Robichaud, Beyers & Neary 

2000).  

In California, wildfire is a common driver of land cover change (Sleeter et al. 2011) 

and in the Big Sur region of the central California coast, the majority of area burned is the 

result of large infrequent fires controlled primarily by extreme weather (Davis & Borchert 

2006). These wildfires can significantly alter vegetation in watersheds that transport sediment 

and nutrients to the adjacent nearshore oceanic environment (Goodridge & Melack 2012) and 

large coastal wildfire events have been shown to impact marine mammals (Bowen et al. 2014; 

Venn-Watson et al. 2013). The sea otter (Enhydra lutris) is a key predator and indicator of 

nearshore ecosystem health. In southern California, the sea otter is listed as “Threatened” 

under  the Endangered Species Act and is also protected under the Marine Mammal 

Protection Act and California state law due to reduced range and declining populations (U.S. 

Fish & Wildlife Service 2014). In addition to influences from oceanic and climate systems, 

changes in nearshore inputs from land cover change in adjacent terrestrial watersheds, such as 

toxins, sediment, nutrients, and pollutants, can have negative effects on ecosystem health and 

sea otter populations (Bodkin et al. 2002; Conrad et al. 2005; Johnson et al. 2009; Miller et 

al. 2010).  

Land cover data are vital in the detection of change over time; these data are widely 

used in ecological applications. To accurately assess impacts to the nearshore environment 

and thus sea otters, land cover data must accurately reflect any change caused by recent 
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disturbance. The multi-resolution land characteristics consortium (MLCR) National Land 

Cover Dataset (NLCD) is a commonly used land cover dataset (Clark et al. 2003; Brewer et 

al. 2005; Eidenshink et al. 2007; Kolden & Abatzoglou 2012), however at the time of this 

study the most recent version of the NLCD was produced in 2006 (the 2011 NLCD was 

released in April 2014, at the completion of this research), and therefore does not reflect the 

impact of land cover changes that occurred in subsequent years. For example, in 2008 two 

large wildfires burned in the Big Sur region of the central California coast.   

Detection of change in land cover requires multi-temporal assessments of land cover 

data. It has been common practice to analyze the difference between two image dates to 

document change.  However, time series approaches are increasingly common (Cohen, Yang 

& Kennedy 2010; Kennedy, Yang & Cohen 2010). The Landsat multispectral data acquisition 

program, including Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), 

and Operational Land Imager (OLI), provides free, relatively high-resolution remotely sensed 

data from 1984 to present that are widely used to study land cover change and disturbance 

across at both regional and global scales.  

One way to utilize such time series in understanding change is to classify multispectral 

imagery, and a variety of classification methods have been developed (Lu & Weng 2007). A 

decision tree (Breiman et al. 1984) uses recursive partitioning to divide a dataset into smaller 

subsets using decision rules that partitions the data into categorical classes (classification 

tree). For classification tree methods, the way in which the data are parsed can differ, though 

most decision methods produce relatively similar overall classification accuracy (Zambon et 

al. 2006). Decision tree classifiers are simple, computationally efficient, and transparent 

(Friedl & Brodley 1997).  In addition, decision tree methods do not require statistical 
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assumptions regarding distributions, are able to process large nonparametric datasets, and use 

both continuous and categorical data (Zambon et al. 2006).  

A challenge in creating a multi-temporal image classification is the collection of high-

quality field data for training and validation.  Although it is possible to collect field data 

coinciding with current or future Landsat acquisitions, it is impossible to conduct field 

sampling to collect data for land cover classification of previous years and incredibly difficult 

and cost-prohibitive to collect field data over large areas.  In such cases, it is possible to use 

other sources of information to create reference data, such as higher resolution aerial 

photographs (Hubert-Moy, Cotonnec & Du 2001; Rogan et al. 2003; Lu & Weng 2007). 

Unfortunately, aerial photographs coinciding with satellite images are not always common, 

and therefore it becomes necessary to extrapolate the reference data over time and space (Xie, 

Sha & Bai 2010).  

Despite the utility of multi-temporal land cover classification datasets, very few 

studies have focused on the classification of historical satellite imagery and most studies have 

focused on the use and classification of historic images for change detection. Xie, Sha & Bai 

(2010) classified historic Landsat TM images by relying on the temporal and spatial 

correlation of spectral features. Based on this demonstration of the spatial and temporal 

relationships between images over time, our goal was to develop a method for classifying a 

time series of Landsat data using a decision tree classifier developed with a single year of 

field observations. The success of the classification was then assessed using both the standard 

error matrix and a local representation of the error. Our objectives were to 1) create a 

parsimonious decision tree that accurately classified historic satellite images, and 2) produce 

maps of land cover from 2005 to 2012 for the Big Sur region that would incorporate the 
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effects of the 2008 fires. This land cover dataset will then be used as an input for modeling 

nonpoint source pollutant transport from the Big Sur coastal watersheds to the nearshore 

environment. 

 

2. Methods 

2.1. Study Area 

 

The study area boundary is formed by 15 adjacent watersheds covering 87,638 ha in 

the northern portion of the Los Padres National Forest (Figure 1.1) and extends approximately 

109 km along the Santa Lucia Range south of Monterey Bay. The Santa Lucia Range rises 

steeply from sea level to just below 1,800 m within a few km from the coast. The climate is 

Mediterranean with long, dry summers and warm, wet winters. Precipitation ranges from 65 

cm annually near the coast to over 130 cm at higher elevations (Davis et al. 2010). 

Temperature generally increases from north to south and with distance from the coast, with 

coastal mean monthly temperature range from 10-13°C in winter to 16-18°C in summer 

(Davis & Borchert 2006). These weather and elevation gradients create a highly diverse 

ecosystem which has been identified as a global biodiversity “hotspot” (Myers et al. 2000).  

The study area consists of three ecological zones, each including a number of vegetation 

types. The coastal plains and foothills include grasslands, coastal sage scrub, chaparral, oak 

forests, and closed-cone pine forest. The lower montane zone includes a mixture of coastal 

sage scrub, chaparral and oak woodlands, and forests. The upper montane zone primarily 

contains mixed broadleaf evergreen and coniferous forests (Davis & Borchert 2006). 
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2.2. Satellite and Ancillary Data 

 

To classify land cover through time, the Surface Reflectance Climate Data Record 

(CDR) produced by the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) was used. Surface Reflectance CDR processes Landsat scenes to at-surface 

reflectance using the second simulation of the satellite signal in the solar spectrum (6 S) 

(Masek & Vermote 2006). Seven CRD Landsat TM and two Landsat ETM+ scenes (Path 

33/Row 34) were downloaded from EarthExplorer (http://earthexplorer.usgs.gov). Cloud free 

data were acquired for eight years from 2005 to 2012 within the months of July and August 

(Table 1.1). CRD Landsat data are Level-1 geometrically and terrain-corrected (Masek & 

Vermote 2006). Landsat ETM+ imagery after May 31, 2003 was affected by the failure of the 

Scan Line Corrector, which causes “stripes” of missing data (Chander, Markham & Helder 

2009). Because of the relative clarity of the atmosphere and the static nature of vegetation 

during the summer months over the study site, missing data on June 19, 2012 were filled from 

the closest and most cloud-free image available from June 3, 2012. 

 The suite of potential predictor variables necessary for creating the classification tree 

included Landsat bands 1 through 5 and 7 from TM and ETM+ sensors (Table 1.2). We also 

calculated several indices such as the normalized differenced vegetation index (NDVI) (Rouse 

et al. 1974; Tucker 1979), normalized burn ratio (NBR) (Key & Benson 2006), and band 

ratios 4/3 and 7/4. NDVI has been used in decision tree classifiers to discriminate differences 

in vegetation from non-vegetation cover (Friedl & Brodley 1997). 

NBR is calculated from atmospherically corrected at-sensor reflectance; NBR= (NIR – 

SWIR) /(NIR + SWIR), where NIR is the near infrared (Landsat TM band 4 (0.76 – 0.90 

µm)/Landsat ETM+ band 4 (0.77 – 0.90 µm)) and SWIR is the shortwave infrared (Landsat 
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TM band 7(2.08 – 2.35µm)/Landsat ETM+ band 7(2.09-2.35µm)). Changes in NIR 

wavelengths indicate a change in green vegetation and biomass (Jensen 1983) whereas SWIR 

is sensitive to soil and plant moisture (Jensen 2007) as well as burnt vegetation, ash, and 

exposed soil (Smith et al. 2005). We also used tasseled cap transformations of greenness, 

wetness, and brightness (Crist 1985) because of their ability to discriminate differences in 

vegetation cover in a prior decision tree classification (Rogan et al. 2003). Incorporation of 

variables that utilize the spatial information has been shown to increase the accuracy of 

remote sensing classification (Wulder & Boots 1998; Atkinson & Lewis 2000; Ghimire, 

Rogan & Miller 2010). In general, smoothing methods can utilize the spatial dependence 

between neighboring pixels, where pixels in close proximity are more likely to be similar 

(Atkinson & Lewis 2000).  To account for spatial dependence in the image due to both steep 

topographical gradients and the heterogeneous composition of plant communities, spectral 

bands of the TM and ETM+ sensors were filtered using a mean low-pass 3x3 filter (Jensen 

2005).  

To derive terrain variables, which have been shown to be useful in the classification of 

vegetation in southern California (Franklin, McCullough & Gray 2000), two 1-arc second 

USGS Nation Elevation Dataset (NED) tiles were mosaicked and processed to produce 

elevation, aspect, and slope. 

2.3. Classification Scheme & Reference Data 

 

Classification categories of forest, shrub, and grass were chosen as broad classes to 

subsume all vegetation community types in the study area. This coarse classification was used 

to match the required input land cover vegetation types for nonpoint source pollutant 

modeling (Chapter 2, this volume). Though both evergreen and mixed forest types are present 
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in the study area, the two classes were combined because of the small percentage of mixed 

forest and substantial confusion between the classes. Class definitions were based on those 

defined by the multi-resolution land characteristics consortium (MLCR) national land cover 

dataset (NLCD) (Homer et al. 2004) (Table 1.3). 

Training and validation reference data were collected in the field for the 2012 

classification tree in November 2012. Each sample point was collected to represent a pixel in 

one of the three cover classes. At each point, vegetation was assessed as a homogeneous pixel 

with a 30- by 30-m area. Due to rugged terrain and dense vegetation much of the study area is 

inaccessible, so the location of field sampling points was limited to areas accessible by roads 

and trails. To increase the pool of reference points and better cover the three vegetation 

classes, reference data were also sampled by photointerpretation of a 2012 National 

Agriculture Imagery Program (NAIP) aerial photograph on a dot grid over the study area. At 

each point, if an approximate 30- by 30-m area was a visually homogeneous patch it was 

recorded as one of the three classes. Photointerpretation yielded 360 reference points while 

field collection produced 219 reference points, for a total of 579 reference points (Table 1.4). 

Reference points were randomly divided into two subsets for training (75 percent) and 

validation (25 percent).  

High resolution photos from NAIP were also available for 2005 and 2009 and were 

used to obtain validation data for these two years by photointerpretation from the same point 

grid. From this grid of points, 180 sites were identified for 2005 and 164 sites were identified 

for 2009. For the remaining years (2006 – 2008, 2010, 2011) persistent sites were used for 

validation. Persistent sites were defined as reference data collected from photointerpretation 
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that remained the same class in 2005 through 2009 and 2012 outside of the area of the two 

fires (i.e., outside of any known disturbance). This yielded 147 persistent sites (Table 1.4). 

2.4. Classification Tree  

 

Because field data were collected in 2012, it was considered as the “base” 

classification year.   A base year classification tree was developed for 2012 with 23 spectral 

and ancillary variables and reference training data collected in the field and from high 

resolution aerial photographs from 2012. The Idrisi Classification Tree Analysis (CTA) 

module with the gain ratio algorithm option was used to develop the decision tree.  Pruning 

levels of 1, 5, and 10 percent were all tested for their ability to produce the most parsimonious 

tree with the highest accuracy. The decision rules generated by the 2012 base tree were then 

applied to all preceding years of data (2011 – 2005), producing a classified map of land cover 

for each year.  

2.5. Accuracy Assessment 

 

We assessed classification accuracy using error matrices which provide overall accuracy of 

the map, per class errors of commission and omission, and the kappa statistic (Congalton 

1991). A global estimate of overall accuracy (provided by the error matrix) may not be 

appropriate for all areas of the map, especially in sub-regions (Comber et al. 2012). Based on 

the methods from Comber et al. (2012), a geographically weighted logistic regression was 

also used to analyze how the classification accuracy varies across space. Because the presence 

or absence of a specific land cover class is binary, a logistic regression or logit model is used. 

Logistic models provide a probability ranging from 0 to 1 representing the correct prediction 

of a land cover class. When used in combination with geographically weighted regression 
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(GWR) (Fotheringham, Brundsdon & Charlton 2000) this allows for the local assessment of 

correctly classified and incorrectly classified land cover to vary over space. This assumption 

that relationships vary across space required the use of a moving kernel which only considers 

data within a specified window to obtain regression estimates. Data are weighed according to 

proximity to a point; data closer are weighted higher and, conversely, data further are 

weighted less (Fotheringham, Brundsdon & Charlton 2000). The results of the geographically 

weighted logistic regression provides the probability that the presence of the reference data is 

correctly identified by the classified data expressed as quartiles (Comber et al. 2012).                       

 

3. Results 

3.1. Classification Tree 

 

The classification tree for the 2012 data which was achieved with a 5 percent pruning 

level is shown in Figure 1.2. The decision tree analysis resulted in a simple tree which used 

only NDVI, Tasseled Cap, and the low pass filter of band 7 out of the 23 input variables, 

using NDVI twice. At the first node, NDVI was used to identify grass. This was the only 

terminal node at which grass was assigned, indicating the remainder of the classification tree 

nodes separated shrub from forest.  At the second node the low pass mean filter of band 7 split 

forest into a terminal node. The second use of NDVI separated out a portion of the shrub 

points as having a lesser NDVI value and final node used tasseled cap greenness to separate 

the remaining shrub from forest.  

3.2. Classification Accuracy 

 

The 2012 classification produced a map with a 90 percent overall accuracy and 0.84 

kappa (Table 1.4).  The overall accuracies for all other years varied from 74 to 83 percent 
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with the highest accuracy in 2010 and the lowest in 2007 (Table 1.5). Kappa values ranged 

from the highest of 0.71 in 2010 and lowest of 0.56 in 2011 (Table 1.5). Overall and per class 

accuracies and kappa values for each year are reported in Table 1.5. 

Accuracy associated with each class for 2012 is shown as minimum, median, 

maximum, and 1
st
 and 3

rd
 quartiles (Table 1.6). The inter-quartile range (IQR) shows the 

overall spatial variation in accuracy, the larger the value the greater the spatial variation 

(Comber et al. 2012). The class with the highest variability in 2012 was shrub cover (Figure 

1.3). Quartiles for 2012 shrub are plotted as maps over the study area showing the spatial 

representation of the probabilities of correctly and incorrectly classified shrub cover from 

Table 1.5 (Figure 1.3). When the spatial map of probabilities are mapped along with reference 

data,  the influence of the reference and classification points is apparent (Comber et al. 2012). 

For example, the accuracy map for 2012 shrub (Figure 1.3) demonstrates that areas where 

many points agree have a higher probability of correct prediction, whereas areas of less 

probability coincide with more frequent misclassifications. Areas where there are no reference 

data and are also shown as highly likely to be correctly predicted, as there is no error.         

 

4. Discussion  

 

The decision tree relied mainly on variables sensitive to vegetation characteristics. 

Ancillary variables were not chosen because, although the study area exhibits dramatic 

topographical gradients, the three land cover types are highly mosaicked across all 

topographic variables (Greenlee & Langenheim 1990; Davis & Borchert 2006). NDVI, 

sensitive to plant greenness and biomass, was used at the first node to identify grass which at 

the time was senesced, producing significantly lower NDVI values than shrub or forest cover. 
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The use of tasseled cap greenness (representing vegetation greenness) and NDVI were used to 

identify forest from shrub. The incorporation of spatial dependence by using a mean filter of 

band 7(sensitive to vegetation moisture) as was utilized to parse forest from shrub. The 2012 

base classification was highly accurate, with an overall accuracy of 90 percent and a kappa of 

0.84, where an accuracy of about 85 percent is argued as a minimum standard for overall 

accuracy (Wulder et al. 2006) and a kappa value of  greater than 0.80 indicates high 

agreement between a classified map and reference data (Jensen 2005). However, once the 

2012 decision tree was applied to the seven previous years of Landsat data, the overall 

accuracies fell ranging from 75 to 83 percent with kappa values ranging from 0.56 to 0.71. 

Low kappa values were a result of confusion among the classes, especially forest and shrub. 

Because of its spectral dissimilarity from other classes, grass produced the highest 

accuracies, though some inaccuracies in grass can be attributed to areas where pasture land 

remains green from irrigation and the presence of nonnative species, and is classified as 

shrub. Shrub and forest classes consistently produced the lowest accuracies. Much of the 

vegetation in the study area is evergreen (both forest and shrub) and shrub cover in areas can 

be visually difficult to differentiate from forest, thus, the highest confusion was between the 

forest and shrub classes. In addition, patches of coast live oak forest grow extensively in 

grasslands and savannas (Davis & Borchert 2006) and can be difficult to differentiate from 

and are often classified as shrub. 

In land cover classification with relatively high accuracy it may not be necessary to 

spatially map local accuracy. However, when a land cover classification results in low 

accuracy or has problematic classes of poor accuracy a spatial representation could be 

beneficial. Information from the maps of accuracy can be used to understand the causes of 
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variation (Foody 2005). Global measures of the 2012 overall classification accuracies was 

high, however the shrub cover class exhibited high variability as more points were both 

incorrectly classified into shrub from forest or out of shrub into forest or grass. Figure 1.3 

shows a regional pattern of low probability of accuracy within the northern and southern 

portions of the study area. The southern region of the study area shows inaccuracies that could 

be a combination of lack of training points and incongruences between vegetation types and 

the classification scheme as three for the four reference point in the southern portion of the 

study area are misclassified. This type of spatially explicit accuracy could inform the 

appropriate choice of land cover data for an application (Comber 2013) or where specific 

regions are of a land cover map are not appropriate (Foody 2005).   For large, difficult-to-

access study sites this can indicate local problem areas in the classification method, and 

highlight regions of the study area where additional data is needed (Kyriakidis & Dungan 

2001). 

In general, higher accuracies can be achieved with the use of a simple classification 

scheme and a large number of training data (Congalton 1991). This was the case for the base 

2012 year, however accuracy was not as high for the preceding years. This could be due to a 

number of reasons. First, the simplicity of the decision tree could have impacted the accuracy. 

To avoid over-fitting the decision tree with the 2012 data, we opted for the most parsimonious 

decision tree, however it is possible that the discrimination between forest and shrub could 

have benefited from a greater number of decision rules. Also, there is potential for error in the 

photointerpretation of validation points.  

Though the classifications of seven historic Landsat images were less accurate 

compared to the 2012 base classification, overall the classification produced land cover maps 
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of moderate to high accuracy. We are confident that using these land cover maps will be 

sufficient in determining the effects of the 2008 wildfire on land cover and to the nearshore 

ecosystem.        

 

5. Conclusion 

 

Transitions in land cover and the disturbances that drive these transitions play a vital 

role in the function of ecosystems. Quantifying these changes relies on their inclusion into 

land cover datasets. Ample amounts of remotely sensed data provide many opportunities for 

the classification of land cover for monitoring land cover changes, however, lack of field data 

can make it difficult to use many classification methods. We present a relatively simple 

method for classifying historic remote sensing images in the absence of historic reference data 

given at least one year of quality reference data is available. Using this method, we 

successfully classified eight years of Landsat data with relative accuracy, including years that 

incorporated the impacts of wildfire. In Chapter 2, these land cover data will serve as the basis 

for a runoff model to quantify the impacts of wildfire and subsequent land cover changes to 

coastal watersheds and the nearshore environment.  
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Figures and Tables 

 

Figure 1.1. Big Sur region of the central California coast, and the 2008 Basin Complex and 

Chalk fires. 
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Figure 1.2. Classification tree for base year 2012, which was applied to all years. 
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Figure 1.3. Maps of spatial distribution of accuracy for 2012 shrub cover. Values represent 

the probability of the presence of the correct class. Maps of agreement between reference data 

and classified map for 2012. Solid circles represent agreement in both data sets, unfilled 

circles represent shrub points incorrectly classified as forest or grass (omission error), and the 

crosses represent forest or shrub points incorrectly classified as shrub (commission error). 

 

 
 

 

 

 

 

 

 

 



18 

 

Table 1.1. Sensor name and date of acquisition for remotely sensed data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor Year Month/Day

Landsat TM 2005 8-Jul

2006 11-Jul

2007 14-Jul

2008 1-Aug

2009 19-Jul

2010 23-Aug

2011 25-Jul

Landsat ETM+ 2012 19-Jul

2012 3-Jul
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Table 1.2. Spectral and ancillary input variables.  
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Table 1.3. Land cover classes based on the descriptions used for the National Land cover 

Dataset (NLCD). 

 

Land-cover class Class description 

Forest Areas dominated by trees generally 

greater than 5 m tall, and greater than 20 

percent of total vegetation cover. 

Includes both evergreen forest where 

canopy is never without green and mixed 

forest where deciduous nor evergreen 

species are greater than 75 % of the total 

tree cover 

Shrub Areas dominated by shrubs less than 5 m 

tall with shrub canopy typically greater 

than 20% of total vegetation. Includes 

true shrubs, young trees in early 

successional stage, or trees stunted from 

environmental conditions 

Grass Areas dominated by grammaniod or 

herbaceous vegetation, generally greater 

than 80 % of the total vegetation. 

Includes grazing 
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Table 1.4. References data obtained for classification. NAIP sources were photointerpreted  

from a point grid over the study area. Persistent sites consist of photointerpreted sites that 

remained constant from 2005 through 2009 and 2012. 2012 sites were divided into training 

(75 percent) and validation (25 percent), for all other years, sites were used for validation. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Data source Number of sites Purpose

2012 Field 219 Training & Validataion 

NAIP 360 Training & Validataion 

2011 Persistent sites 147 Validation

2010 Persistent sites 147 Validation

2009 NAIP 164 Validation

2008 Persistent sites 147 Validation

2007 Persistent sites 174 Validation

2006 Persistent sites 147 Validation

2005 NAIP 180 Validation
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Table 1.5. Classification error matrices for each year. 

 
 

 

 

 

 

 

Reference Reference

Year Classified Forest Shrub Grass Total

Commission 

Error Year  Classified Forest Shrub Grass Total

Commission 

Error

2005 Forest 70 18 1 89 0.21 2009 Forest 56 23 0 79 0.29

Shrub 15 48 1 64 0.25 Shrub 7 49 4 60 0.18

Grass 0 9 18 27 0.33 Grass 1 4 20 25 0.20

Total 85 75 20 0.76 Overall Total 64 76 24 0.76 Overall 

Omission 

Error

0.18 0.36 0.10 0.59 Kappa Omission 

Error

0.13 0.36 0.17 0.62 Kappa

Classified Forest Shrub Grass Total

Commission 

Error Classified Forest Shrub Grass Total

Commission 

Error

2006 Forest 58 14 1 73 0.21 2010 Forest 63 10 0 73 0.14

Shrub 9 39 8 56 0.30 Shrub 11 44 1 56 0.21

Grass 0 3 15 18 0.17 Grass 0 3 15 18 0.17

Total 67 56 24 0.76 Overall Total 74 57 16 0.83 Overall 

Omission 

Error

0.13 0.30 0.38 0.61 Kappa Omission 

Error

0.15 0.23 0.06 0.71 Kappa

Classified Forest Shrub Grass Total

Commission 

Error  Classified Forest Shrub Grass Total

Commission 

Error

2007 Forest 47 24 2 73 0.36 2011 Forest 59 14 0 73 0.19

Shrub 3 46 7 56 0.18 Shrub 16 39 1 56 0.30

Grass 0 1 17 18 0.06 Grass 0 7 11 18 0.39

Total 50 71 26 0.75 Overall Total 75 60 12 0.74 Overall 

Omission 

Error

0.06 0.35 0.35 0.60 Kappa Omission 

Error

0.21 0.35 0.08 0.56 Kappa

Classified Forest Shrub Grass Total

Comission 

Error Classified Forest Shrub Grass Total

Commission 

Error

2008 Forest 49 24 0 73 0.33 2012 Forest 35 13 0 48 0.27

Shrub 3 49 4 56 0.13 Shrub 1 44 1 46 0.04

Grass 0 1 17 18 0.06 Grass 0 0 50 50 0.00

Total 52 74 21 0.78 Overall Total 36 57 51 0.90 Overall 

Omission 

Error

0.06 0.34 0.19 0.65 Kappa Omission 

Error

0.03 0.23 0.02 0.84 Kappa



23 

 

Table 1.6. Quartiles for geographically weighted logistic regression representing probability 

of the classification correctly predicting the reference data. Interquartile range (IQR) 

represents the variability in probability.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Class Min. 1st Qu. Median Mean 3rd Qu. Max. IQR

2012 Forest 0.84 0.88 0.91 0.91 0.93 1.00 0.045

Shrub 0.60 0.85 0.90 0.89 0.93 1.00 0.082

Grass 0.91 0.99 1.00 0.99 1.00 1.00 0.008
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Chapter 2: Impacts of wildfire on coastal watersheds and the nearshore 

environment in Big Sur, California 

 

Abstract 

 

In the Mediterranean ecosystems of coastal California, wildfire is a common 

disturbance that can significantly alter vegetation in watersheds that transport sediment and 

nutrients to the adjacent nearshore oceanic environment. We assess the impact of two 

wildfires that burned in 2008 on land cover and the nearshore environment along the Big Sur 

coast in central California. Nonpoint source pollutants were modeled using a GIS-based 

empirical deterministic model utilizing multi-year land cover that incorporates wildfire effects 

to quantify export to the nearshore environment resulting from the fire effects. Results 

indicate post-fire concentration increases in phosphorus by 161 percent, sediments by 350 

percent and total suspended solids (TSS) by 53 percent above pre-fire years. Result also link 

wildfire severity to the specific land cover changes that subsequently increase exports of 

pollutants and sediment to the nearshore environment. The approach used is not only 

replicable across other watersheds but also provides a framework for land management of 

wildfire, including suppression, thinning, and post-fire rehabilitation and other activities that 

change land cover at a landscape scale for assessing potential negative impacts to the 

nearshore environment in coastal basins.  

 

1. Introduction 

 

Wildfire is an integral natural disturbance in many ecosystems. Anthropogenic climate 

change, however, is predicted to alter fire characteristics through the century  (Westerling et 
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al. 2006; Littell et al. 2009), creating disturbance patterns that may alter ecosystems in 

unprecedented ways. Wildfire is a common disturbance in Mediterranean ecosystems of 

coastal California watersheds draining into the Pacific ocean (Keeley & Zedler 2009). These 

large coastal wildfire events have been shown to impact marine mammal immune response 

(Bowen et al. 2014; Venn-Watson et al. 2013). As a key marine mammal predator, the sea 

otter (Enhydra lutris), is an indicator of nearshore ecosystem health. In southern California, 

the sea otter is listed as “Threatened” under  the Endangered Species Act and protected under 

the Marine Mammal Protection Act (U.S. Fish & Wildlife Service 2014). Despite protection, 

the California sea otter population is recovering at a lower-than-expected rate, leading to 

queries seeking to identify factors impeding population growth rate (Johnson et al. 2009). 

Inputs to the sea otter’s nearshore habitat from terrestrial watersheds, such as toxins,  

nutrients, and pollutants, have been shown to negatively affect sea otter health (Conrad et al. 

2005; Johnson et al. 2009; Miller et al. 2010), but prior studies have focused primarily on 

pathogens (Johnson et al. 2009) or large, anthropogenic spill events like the Exxon Valdez oil 

spill of 1989 (Bodkin et al. 2002).  

Wildfire significantly alters vegetation in watersheds that supply sediment and 

nutrients to the adjacent nearshore oceanic environment (Goodridge & Melack 2012). In 

altering the condition of soil and vegetation, fire effects can drastically alter the hydrologic 

response of a watershed by affecting infiltration and transport of nutrients and metals (Stein et 

al. 2012)  and increasing erosion and sediment yields (Warrick et al. 2012; Moody et al. 

2013). The loss of vegetation and duff and litter layers reduces interception thereby altering 

infiltration of rainfall (Baker 1990). In addition, severe fire often cause hydrophobic soils 

(Shakesby & Doerr 2006) especially in chaparral ecosystems (Warrick et al. 2012) further 
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increasing runoff. Wildfire has been shown to increase the amount of phosphorus and 

nitrogen in streams (Spencer & Hauer 1991; Coombs & Melack 2013), even many years after 

a wildfire (Hauer & Spencer 1998), as well as sediment loads (Warrick et al. 2012).  In 

coastal California watersheds these post-fire increases in runoff of sediment and nutrients 

have been measured within streams (Warrick et al. 2012; Stein et al. 2012), suggesting that 

large wildfires might also impact the nearshore environment as these nutrients and sediments 

then drain into the ocean. The effects of wildfire on the increasing transport of sediment and 

nutrients have been shown to adversely affect freshwater aquatic ecosystems  (Gresswell 

1999; Spencer, Gabel & Hauer 2003), however, the effect of these increases in marine 

ecosystems has not been well documented.  

The specific effects of fire on the nearshore ecosystem are difficult to delineate from 

in-situ stream sampling, as wildfires often burn only portions of watersheds and burn with 

varying severity across watersheds. Additionally, the results from studies collecting in-situ 

measurements are not transferable to other fires or to watersheds across time and space due to 

the spatial variability of burn severity across the landscape (Shakesby & Doerr 2006). To our 

knowledge, no prior studies have attempted to model the spatially explicit impacts of a 

wildland fire event on runoff into the nearshore environment using a replicable, watershed-

scale approach. 

To quantify spatially explicit impacts of wildfire on nonpoint source pollutants, an 

approach must utilize model inputs that reflect the spatially and temporally variable wildfire 

effects on relevant inputs. The primary input affected by wildfire at landscape scales is land 

cover, which is often classified from remotely sensed data and combines both vegetation and 

human development. Commonly available land cover datasets such as the National Land 
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Cover Dataset (NLCD) (U.S. Geological Survey 2014) are widely used, but can be limiting 

because they are produced at infrequent intervals due to the challenges of acquiring adequate 

remotely sensed data and the intense effort required to produce continental-scale 

classifications. For example, the most recent NLCD data when this research was conducted 

was produced in 2006 (the 2011 NLCD was released in April 2014) and as a result does not 

account for subsequent years of land cover transition, including two large wildfires that 

burned on the Big Sur coast in 2008. Incorporating these land cover disturbances is essential 

to accurately accounting changes in sources of nonpoint sources of nutrients and sediments.  

Prediction of post-fire effects has focused on runoff and erosion rates and relied on a 

variety of physically and empirically based models, spatially distributed models, and 

professional judgment (Larsen & MacDonald 2007). Commonly used post-fire runoff models 

such as ERMIT (Robichaud et al. 2007), RUSLE (Renard & Foster 1991), and Disturbed 

WEPP (Elliot & Hall 2010) include land cover as an input, but are not not spatially explicit 

(but see Renschler 2003). Nutrient outputs such as phosphorus and nitrogen are also not 

commonly modeled. The use of these models produces a wide range of runoff estimates, 

making comparisons difficult (Robichaud, Beyers & Neary 2000). In addition, few have been 

validated in post-fire environments (Larsen & MacDonald 2007). Among models that have 

been tested for post-fire erosion, result have demonstrated that the amount of vegetation cover 

post-fire has a strong impact on erosion rates (De Dios Benavides-Solorio & MacDonald 

2005). Following wildfire, vegetation communities continue along established succession 

pathways or undergo type conversions from one community to another along alternative 

pathways (Fites-Kaufman, Bradley & Merrill 2006). The severity of a fire, often described as  

‘burn severity’, or the magnitude of change in the post fire environment (Key & Benson 
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2006), impacts vegetation succession (Epting, Verbyla & Sorbel 2005), vegetation 

composition and structure (Lentile 2005; Keeley, Brennan & Pfaff 2008) and therefore the 

potential for increased erosion and flooding (Robichaud, Beyers & Neary 2000). 

Understanding burn severity across landscapes and the resulting changes within these 

landscapes is especially important when considering effects occurring in coupled ecosystems 

like the nearshore environment and its adjacent terrestrial watersheds. Much research has been 

focused on characterizing burn severity through remotely sensed data (Key & Benson 2004; 

van Wagtendonk et al. 2004; Cocke et al. 2005; Miller & Thode 2007; Rogan & Franklin 

2001; Walz et al. 2007) and looking at changes and trends in burn severity (Miller et al. 2008, 

Miller and Safford 2013). While several longitudinal studies have monitored vegetation 

succession after wildfire at the plot scale (Keeley & Zedler 1978; Greenlee & Langenheim 

1990; Callaway & Davis 1993; Santana, Baeza & Maestre 2012), few studies have looked at 

relationships between burn severity and vegetation at landscape scales. These have mostly 

focused on characterizing pre-fire vegetation contributions to post-fire severity (Miller & 

Thode 2007; Dillon et al. 2011; Kolden & Abatzoglou 2012) rather than linking severity to 

post-fire transitions, in part due to the relatively recent development of representative spectral 

indices that allow burn severity to be mapped. 

 Quantifying the relative impacts of wildfire on land cover change and subsequent 

runoff is critical to understanding how terrestrial disturbance and change can impact 

threatened species in the nearshore environment. While most studies surrounding the limited 

growth of the sea otter population in central California have focused on anthropogenic inputs 

particularly in Monterey Bay (Conrad et al. 2005; Dowd, Press & Huertos 2008; Johnson et 

al. 2009), the Big Sur population of sea otters is comparatively isolated and protected from 
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anthropogenic inputs, but still limited in terms of population growth. We hypothesize that 

large wildfires have similar detrimental effects as anthropogenic inputs to the nearshore 

environment due to altered land cover and subsequent increases in modeled nonpoint source 

pollutants that the watersheds with the highest burn severity have the greatest increases in 

runoff following wildfire. Here, our goal was to assess the impact of two wildfires that burned 

in 2008 on land cover and to determine the sensitivity of nonpoint source pollutants into the 

nearshore environment to changes in land cover along the Big Sur coast in central California. 

Our objectives were:  1) to characterize the effect of burn severity on land cover within the 

study area, 2) to model nonpoint source pollutants utilizing a multi-year land cover time series 

that incorporates wildfire effects, and 3) to quantify the changes in modeled nonpoint source 

pollutants to the nearshore environment resulting from the fire effects. 

 

2. Methods 

2.1. Study Area 

 

The study area is located on the central California coast and extends approximately 

109 km along the Santa Lucia Range south of Monterey Bay (Figure 2.1). The boundary is 

formed by twelve adjacent watersheds covering 87,638 ha and draining a portion of the Santa 

Lucia Range in the northern portion of the Los Padres National Forest. All but one of the 

watersheds drain west-facing slopes from coast to ridgeline. The Santa Lucia Range rises 

steeply from sea level to just below 1,800 m within a few km from the coast. The area has a 

Mediterranean climate with long dry summers and wet winters with a fire season typically 

lasting from June to November (Greenlee & Langenheim 1990). Precipitation is dependent on 

elevation ranging from 65 cm near the coast to over 130 cm at ridge top (Davis et al. 2010). 
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Average temperature generally increases from north to south and with distance from the coast. 

Coastal mean monthly temperature ranges from 10°C-13°C in winter to 16°C-18°C in 

summer (Davis & Borchert 2006). These weather and elevation gradients create a highly 

diverse ecosystem which has been identified as a global biodiversity “hotspot” (Myers et al. 

2000). From the coast inward, there are three ecological zones within the study area, each 

including a number of vegetation types. The coastal plains and foothills zone includes 

grasslands, coastal sage scrub, chaparral, oak forests, and closed cone pine forest. The lower 

montane zone includes a mixture of coastal sage scrub, chaparral and oak woodlands and 

forests. The upper montane zone primarily contains mixed broadleaf evergreen and coniferous 

forests (Davis & Borchert 2006).  

In the Big Sur region, the majority of area burned is from large infrequent fires 

controlled primarily by extreme weather with return intervals estimated to be 75 years on 

average (Davis & Borchert 2006). Prior to 2008, the most recent fires to burn through portions 

of the study area were the 1977 Marble Cone Fire (72,500 ha) and the 1999 Kirk Complex 

(35,100 ha). In 2008 two large fires, the Basin Complex and the Chalk Fires, burned 

approximately 33,038 ha, or 42 percent of the study area. The Basin Complex Fire burned 

from June 21 to July 27, 2008 and the Chalk Fire burned from September 27 to October 30. 

Both fires were contained before the onset of the rainy season, which is from November 

through March (Davis & Borchert 2006).
 

2.2. Fire Effects 

 

To characterize the effects of the 2008 wildfires on land cover, classifications of land 

cover and burn severity derived from remotely sensed data were explored. A land cover 

dataset for each year from 2005 to 2012 was developed in order to capture the effects of the 
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2008 fires (Chapter 1, this volume). Land cover was classified into one of three types: forest, 

shrub, or grass. These three classes are the dominant vegetation types across the study 

accounting for 97 percent of all land cover. Because bare ground was such a small percentage 

of the study area (< 0.01 percent) it was not specifically classified and because of spectral 

similarity to senesced grass was classified as grass. Due to the date of image acquisition 

(August 1, 2008) and the timing of the early summer Basin Complex Fire (June) and the late 

ignition of the Chalk Fire (September), fire effects from the Basin Complex are recorded in 

the 2008 land cover data approximately one month after the fire burned while fire effects from 

the Chalk Fire are recorded approximately one year post fire in the 2009 land cover data. 

Land cover changes for each class were quantified by plotting the change in percent cover 

over time between burned and unburned areas. Error was accounted for using error matrices 

to provide a measure of overall and per class accuracy (Chapter1, this volume). The overall 

classification accuracy ranged from 75 to 90 percent for the eight years of land cover maps 

produced. Individual class accuracies were quantified using the commission error which 

indicated the probability that a pixel on the classified land cover map represents the same 

category if you were standing in the field (Congalton 1991). The commission error for each 

land cover class was then averaged over all years.    

Landscape-scale burn severity is commonly represented with a spectral index called 

the differenced Normalized Burn Ratio (dNBR) (Key & Benson 2006). The NBR is 

calculated from atmospherically-corrected at-surface reflectance; NBR= (NIR – SWIR) / 

(NIR + SWIR). The differenced equation, dNBR, is produced by subtracting the post-fire 

NBR image from the pre-fire NBR, creating an index representing a magnitude of change 

(Key & Benson 2006). Changes in NIR wavelengths indicate a change in green vegetation 
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and biomass (Jensen 1983) whereas SWIR wavelengths are documented to have sensitivity to 

soil and plant moisture (Jensen 2007) as well as burnt vegetation, ash, and exposed soil 

(Smith et al. 2005).  

Four metrics were calculated to represent the effects of fire for each basin (Table 2.1). 

First, percent high burn severity (HS) was calculated from the dNBR using a threshold of 367, 

which was identified by Miller & Thode (2007) as being correlated to field measures in a 

variety of vegetation types in the Sierra Nevada having high to complete vegetation morality. 

Second, the Severity Metric (SM; Lutz et al. 2011) was calculated based on the dNBR. Lutz 

et al. (2011) developed the Severity Metric to represent burn severity continuously. Grouping 

burn severity or using a threshold to determine discrete classes is necessary as a means to 

communicate the effects of fire and in accounting for differences in scale and diverse methods 

used to measure burn severity for different fires (Miller & Thode 2007). However, separating 

burn severity into discrete categories can be problematic when classes differ between studies 

(Miller & Thode 2007), and information can be lost in the process (Lutz et al. 2011). The 

Severity Metric is computed as one minus the area under the cumulative distribution for a 

specified range of dNBR (Lutz et al. 2011).  

Finally, two transitions in land cover were calculated: 1) the percent of pixels that 

transitioned from forest to shrub or from forest to grass (characterized as ‘Forest Loss’) and 2) 

the percent of pixels that transitioned from shrub to grass (‘Shrub Loss’). These two 

vegetation transition metrics were calculated for two temporal periods for each watershed, 

from 2006 to 2008 and from 2006 to 2009, to capture the effects of both fires. For 

consistency, 2006 was chosen as the pre-fire year instead of 2007 because the study area 

received only 50 percent of average precipitation in 2007 (California Department of Water 



38 

 

Resources 2010), and the subsequent drought stress effects on vegetation had a noticeable 

effect of reducing the accuracy of the 2007 land cover classification (Chapter 1, this volume). 

Because not all burned basins were 100 percent burned, the majority of remaining pixels not 

categorized as Forest Loss or Shrub Loss did not transition and remained the same between 

the years. The rest of pixels transitions (< 2 percent) were considered to be background noise 

as changes in land cover classes can be a result of classification accuracy and not an 

ecological process (Foody 2002). 

2.4. Hydrologic Effects 

 

Annual accumulation and concentrations of nonpoint source pollutants were modeled 

using the Open Nonpoint Source Pollution and Erosion Comparison Tool (OpenNSPECT) 

(Eslinger et al. 2012). OpenNSEPCT is an open-source Geographic Information Systems 

(GIS)-based tool that models pollutants and erosion loads delivered to coastal watersheds 

(NOAA 2012).  OpenNSPECT  relies on the relationship between land cover, nonpoint source 

pollutants, and erosion to estimate accumulations from overland flow within a watershed 

(NOAA 2012). Inputs to the model include elevation, land cover, rainfall, and soil data, R-

factor, and pollutant coefficients. 

Runoff is modeled as the basis for OpenNSPECT processes based on a methods 

developed by the National Resource Conservation Service (NRCS) (NRCS 1986). It relies on 

the inputs of rainfall, elevation, land cover and soil and produces an accumulated runoff grid 

output of volume in liters. Pollutant concentrations are estimated using land cover as an 

indirect means by which coefficients determined by water quality standards  represent the 

contribution of each land cover class to overall pollutant load during a precipitation event 

(NOAA 2012). Five default pollutants are measured: nitrogen, phosphorus, total suspended 
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solids (TSS), lead, and zinc. Using pollutant coefficient values which represent an average 

concentration (mg/L) for each cell’s land cover type and a flow direction grid from the DEM, 

a pollutant mass accumulation is calculated representing the accumulated pollutant mass at 

each cell and an accumulated pollutant concentration grid (Figure 2.2).  

Rates of erosion and sediment loads are estimated with a modified version of the 

widely used revised universal soil loss equation (RUSLE)  (Renard & Foster 1991):  

            P 

Where A is the average annual soil loss, R is a rainfall/runoff erosivity factor, K is a soil 

erosivity factor, L is the length-slope factor, S is the slope steepness factor, C is the cover 

management factor, and P is the support practice factor which is not included in the 

OpenNSPECT calculation (NOAA 2012). RUSLE uses these factors to represent the 

processes of infiltration, overland flow, particle detachment, and sediment transport (Larsen 

& MacDonald 2007). User inputs needed to model sediment yields include elevation, land 

cover, soils, and the rainfall/runoff erosivity factor (R factor). The output is a gridded annual 

accumulation of sediment yield.  

OpenNSPECT is dependent upon land cover for predicting runoff, pollutants and 

erosion, therefore, changes in land cover inputs function primarily as a model sensitivity 

study. Model outputs based on changes in land cover were predicted by running 

OpenNSPECT for each year from 2005 to 2012. To accomplish this, each year an updated 

land cover dataset was used which incorporates the effects of fire in 2008. The years of 2005 

– 2007 were years without fire or pre-fire years, 2008 included effects of the Basin Complex 

Fire, and 2009 – 2012 included both the Basin Complex and Chalk fires in post-fire years. 
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Hydrologic effects were measured at the basin level and also aggregated by burned 

and unburned. Sub-basins that were predominantly burned or unburned were delineated in 

order to more clearly separate burned and unburned areas. Partington Creek basin was divided 

into one unburned and one burned basin, and Limekiln Creek was divided into two unburned 

basins and one burned basin. All accumulation grids were overlapped with stream data and 

only channels that matched actual perennial and intermittent streams were considered for 

sampling. For all output grids, sample points or “pour points” where selected where streams 

drained into the ocean for 14 of the 15 basins (Figure 2.1). Brunette Creek basin drains into 

Arroyo De La Laguna basin before reaching the ocean, and therefore the two were merged 

and points were only taken from the pour point of Arroyo De La Laguna basin. Annual 

accumulation of loads and concentrations were gathered at each pour point. For analysis by 

basin, sample points were summed per basin then divided by the area of each basin to 

normalize for area. For comparing burned to unburned area, pour points were summed from 

basins where > 75 percent of the area burned (4 basins) and divided by the total area of 

burned basins. Likewise, the remaining 10 unburned basins were summed and divided by the 

total area of unburned.   

2.5. Analysis 

 

Impact of fire on hydrologic responses was visualized by comparing the percent 

change in modeled nonpoint source pollutants from burned and unburned basins from a pre-

fire baseline (2005 – 2007) from all outputs from OpenNSPECT. In 2008, only the basins 

burned by the Basin Complex Fire were used to calculate the pre-fire baseline and the percent 

change in export. For all other years, all burned basins were included in the pre-fire baseline 

and the percent change in nonpoint source pollutants.  
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Spearman Rank correlation was used to explore the relationship between the changes 

in nonpoint source pollutants and the fire metrics. Percent changes in concentrations of each 

export per basin were compared to each fire metric for the two time periods (2006 – 2008 and 

2006 – 2009). Percent change in basin nonpoint source pollutants for 2006 to 2008 and from 

2006 to 2009 were correlated to Severity Metric (SM), High Severity (HS), and Forest Loss 

and Shrub Loss in 2008. Spearman Rank was used to account for the small sample size of 

basins (n = 14) and the non-normal distributions (Wilks 1995) Significance was measured at 

the p < 0.05 level.    

 

3. Results 

3.1. Land cover 

 

Within fire perimeters, average pre fire (2005 – 2008) land cover proportions were 52 

percent forest, 43 percent shrub and 5 percent grass (Figure 2.3). In 2008, after the Basin 

Complex Fire, grass cover increased to 46 percent as forest decreased to 11 percent with 

shrub maintaining at 43 percent. In 2009, approximately one year after both the Basin 

Complex and Chalk fires, forest decreases further to 8 percent of total cover, shrub increases 

to 76 percent and grass cover decreases to 16 percent. Post-fire land cover proportions (2010 

– 2012) were 28 percent for forest cover, which increased slightly each post-fire year but still 

had less total cover than in pre-fire conditions. Shrub post-fire cover was 67 percent, which 

decreased each post-fire year but was still higher than pre-fire conditions. Average post-fire 

grass cover was 4 percent which was consistent with pre-fire grass cover.     
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3.2. Watershed Outputs 

 

Modeled annual concentrations of phosphorus (P), Total Suspended Solids (TSS), and 

sediment summed within burned basins all increased above pre-fire baseline levels during 

2008 (Figure 2.4) and 2009. There were was little change in nitrogen. Relative percent change 

in 2008 included only the basins affected by the Basin Complex Fire and showed that in 2008 

there was 161 percent increase in phosphorus export, a 115 percent change in TSS, a 337 

percent increase in sediment, and a 26 percent increase in runoff. In 2009, all of the burned 

basins had a 71 percent increase in phosphorus, a 53 percent increase in TSS, a 109 percent 

increase in sediment, and a 4 percent decrease in runoff over pre-fire baseline levels. For 

phosphorus, TSS, and sediment, pre- and post-fire levels were similar to those of unburned 

areas. Runoff, however, was higher in burned areas than in unburned areas pre-fire, but post-

fire runoff dropped below that of unburned areas.  

3.3 Burn severity and watershed export 

 

Fire metrics were significantly correlated to relative change in nonpoint source 

pollutants at the p < 0.01 level (Table 2.2). The highest correlations for change between post-

fire year 0 (2006 – 2008) were between Forest Loss and both phosphorus and sediment (r = 

0.89, p < 0.001), and between SM and TSS (r = 0.89, p < 0.001). Overall, all of the fire 

metrics were strongly correlated with all of the relative changes in export, except for Forest 

Loss and runoff, which was not significant. The highest change between the post-fire year 

1(2006 – 2009) period were between HS and phosphorus. For this period, runoff was not 

significantly correlated with any for the fire metrics. Omitting runoff, overall, for post-fire 

year 1, HS showed the strongest correlations with changes in export, while Forest Loss has 

the weakest correlations. 
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4. Discussion 

 

The effects of the 2008 wildfire are shown in the observed land cover transitions and 

similar land cover changes have been observed in studies in comparable post-fire vegetation 

types. A reduction in forest and shrub cover in 2008 resulted in a large increase of grass cover 

which is due to the removal of shrub canopy promoting the growth of herbaceous annuals and 

perennials (Davis & Borchert 2006; Keeley 2006a). Keeley, Fotheringham & Baer-Keeley 

(2005) observed that in post-fire California Mediterranean shrublands during the first spring 

post-fire, approximately 50 percent of post-fire cover was composed of herbaceous annuals in 

the interior sage scrub communities and perennials in the coastal sage scrub.  

In 2009, one year after both fires, shrub increases to 76 percent of the land cover. 

Shrub cover in California Mediterranean ecosystems consists of a variety of species that are 

obligate resprouters, obligate reseeders and facultative seeding species (Keeley 2006b). 

Coastal sage scrub communities are comprised of mostly commonly resprouters, while 

interior sage scrub is composed of fewer resprouting species and more facultative seeders that 

rely more on obligate seeding (Keeley 2006a). Dependent on slope and aspect, chaparral 

communities are a mixture of obligate seeders on xeric sites while resprouting species occupy 

more mesic sites (Keeley 2006a). All shrub species in this ecosystem are shown to regenerate 

in response to fire (Keeley 2006b)  which is consistent with a large increase in shrub 

measured in 2009. Keeley, Fotheringham & Baer-Keeley (2005) also found that in a five-year 

study, shrub cover increased in each post-fire year, though shrub growth can vary post-fire 

(Keeley 1981). After 2009, there was subsequent decrease in shrub cover in every post-fire 

year (Figure 2) which could also be attributed to resprouting of coast live oak (Davis & 

Borchert 2006) that is classified as shrub initially, or spectral confusion between the shrub and 
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forest classes. These land cover transitions generally align with other studies that have shown 

that increasing density of vegetation decreases runoff  (Nicolau & Solé-Benet 1996; Garcia-

Estringana et al. 2010) and the presence and type of forest greatly reduces erosion (Descroix, 

Viramontes & Vauclin 2001). In the three post-fire years after 2009, grass cover returned to 

pre-fire levels, whereas forest cover remained below pre-fire levels and shrub remained 

above.  

OpenNSPECT pollutant coefficients produce highest mass and concentration outputs 

for grass out of the three cover classes, but are the same for shrub and forest. For some 

pollutant coefficients such as nitrogen, all three cover classes produce the same mass and 

volume, making the model insensitive to changes in land cover for certain pollutants. This is 

also why modeled nitrogen did not show any significant changes between years. The increase 

of grass above pre-fire levels (and subsequent decrease in forest and shrub) in 2008 and to a 

lesser extent in 2009 is therefore the driving cause of increases in modeled pollutants. By 

2012, percent change in nonpoint source pollutant levels are near or below pre-fire levels, 

though post-fire vegetation proportions differ from pre-fire.  

When comparing the changes in nonpoint source pollutants by basin, those with the 

highest indications of fire severity also showed the largest modeled increases in nonpoint 

source pollutants. This indicates that increased burn severity is linked to certain land cover 

transitions. Higher levels of burn severity are associated with greater loss of forest and shrub 

and increases in grass to produce increases in nonpoint source pollutants, while unburned 

basins or basins low fire metric values showed less increase in pollutants and greater forest 

and shrub loss. Major transitions (i.e. from forest to grass) are occurring at the higher values 

of dNBR (Figure 2.5) compared to transitions between forest and shrub and shrub to grass. 
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The severity of a fire is one of the most important  influences on post-fire erosion rates in 

many ecosystems (De Dios Benavides-Solorio & MacDonald 2005). Likewise, the highest 

levels of dNBR lead to changes in land cover that produced increased modeled changes in 

nonpoint source pollutants.  

 The use of a multi-year land cover dataset helped to explicate the impacts of the 

2008 wildfires through changes in land cover and subsequent increases in modeled nonpoint 

source pollutants to the nearshore ecosystem above non fire years. These are effects that 

would not have been observed using only pre-fire land cover data. Various studies using in-

situ stream measurements have found increases in watershed transport of nutrients in storm 

events after a fire. Hauer and Spencer (1998) collected stream nutrient data during a fire from 

a series of paired watersheds in Montana. Their results for concentrations are 5 to 10 fold 

higher for phosphorus and 13 to 25 fold higher for TSS. In southern California coastal 

watersheds, Stein et al. (2012) found a 921 fold increase in phosphorus concentration and a 

two fold increase in TSS after post-fire storm events. Our modeled annual phosphorus 

concentrations showed a 161 percent increase compared to pre-fire average and a 114 percent 

increase in TSS over a pre-fire average. Modeled increases are expected to be lower as they 

are measured over an annual scale. Studies have also found significant increases in sediment 

export during early season storms in southern California (Warrick et al. 2012; Coombs & 

Melack 2013) which corresponds to the 350 percent modeled annual increase in sediment in 

the fire year.  

Though results agree with studies in finding orders of magnitude increases in nonpoint 

source pollutants post-fire, modeled concentrations tended to overestimate concentrations of 

nonpoint source pollutants compared to studies in similar areas (Warrick et al. 2012) or to 
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ecosystem specific water quality standards (US EPA 2000). Modeled phosphorus 

concentration in unburned years were about 5 times higher than ambient water quality criteria 

developed for the southern and central California chaparral and oak woodlands. The cause of 

this disagreement between concentrations can potentially be attributed to difference between 

spatial and temporal extents. Often post-fire runoff studies lack spatial and temporal context 

for reported result (Shakesby & Doerr 2006). The same is likely true for water quality 

standards generated at local and regional scales. Studies collecting in-situ stream data are also 

primarily conducted in response to individual storm events, while our modeled data are based 

on an annual average of precipitation with no extremes; responses are averaged throughout 

the year.  

Along with challenges of comparison with in-situ studies, several limitations have 

been observed. The model is primarily for small and mostly urban watersheds (NOAA 2012). 

First, there are also inaccuracies inherent in each of the data inputs. For land cover data, 

accuracy is spatially heterogeneous, making it difficult to pinpoint specific locations of errors. 

Second, Larson & MacDonald (2007) tested the accuracy of two annual time scale models: 

the physically based Disturbed WEPP and empirically based RUSLE models to predict post-

fire sediment yields in the Colorado Front Range and found that they were poorly correlated 

to actual sediment yields. The RUSLE model, designed to predict long-term annual averages 

of soil loss for conservation planning and assessment, does not account for sediment in 

channels and is more appropriate for small areas (Nearing et al. 2005). Finally, precipitation 

inputs into OpenNSPECT for each year were for the 30 year climatological normal, however, 

precipitation is a major driver of watershed responses (Moody et al. 2013) and the variation in 

observed annual precipitation would produce differing amounts of runoff each year. The years 
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2007 through 2009 included a droughty period with below normal precipitation, which was 

likely a primary driver of the fire activity, and could have had a variety of effects on land 

cover independent of the fires.  

True post-fire conditions could not be reflected in model processes and inputs. Post-

fire runoff is relatively poorly understood (Moody et al 2013; Stein et al 2012) especially in 

California chaparral watersheds (Coombs & Melack 2013). Land cover data is represented as 

static through the year in the model, however, in post-fire environments there are interannual 

changes in fire year vegetation.  It is likely that during the first storm event after the fire, 

vegetation cover is sparser but continues to grow throughout the rainy season. Sparser 

vegetation cover would lead to increased export (Robichaud, Beyers & Neary 2000) 

especially considering the effects of fire on soils. Severe wildfire produces highly spatially 

variable hydrophobic soils in California chaparral (Hubbert et al. 2006) which is not 

accounted for in the soil dataset. The Basin Complex Fire produced various degrees of soil 

hydrophobicity within high and moderate soil burn severity ratings (SEAT 2008). Also, 

combustion of plants and other natural materials releases nutrients present in ash (Ranalli 

2004) in ways that are distinct from runoff from agricultural or developed land cover and are 

not accounted for in OpenNSPECT. Wildfire creates an increases in nutrients such as 

phosphorus and nitrogen primarily through smoke and the deposition of ash through overland 

flow (Ranalli 2004).   
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5. Management Implications 

 

Despite these limitations and uncertainties, our modeled increases in nonpoint source 

pollutants correspond with post-fire research by generally showing increases in runoff, 

sediment, and nutrients. We hypothesize that results would not be significantly altered due to 

the sensitivity of the model to land cover transitions resulting from the 2008 fires. Due to 

additional source of nutrients not modeled through OpenNSPECT, we believe that this model 

produces a conservative estimate of the export of nutrients and sediment from these coastal 

watersheds. A water quality management plan for a watershed in just south of Big Sur Morro 

Bay indicates that sediment loading is 50 percent higher than the established total maximum 

daily load (TMDL) and would be even higher in the event of a wildfire in the basin (State of 

California Central Coast Regional Water Quality Control Board 2002). Our modeled results 

indicate a 350 percent increase in sediment yield. An increase of this magnitude violates these 

established water quality standards from nearby coastal watersheds. Although central 

California coastlines are relatively unimpaired (Green et al. 2004) nutrient loading and the 

growth of toxic algae has been documented to cause sea otters mortality in Monterey Bay 

(Miller et al. 2010). Though we modeled a 161 percent increase in phosphorus, these elevated 

levels were fleeting, returning to pre-fire levels two years after fire. This may not be enough 

of an increase to create impaired coastal waters, however incorporating more representative 

post-fire parameters, such as soil hydrophobicity, annual precipitation, and additional land 

cover classes would likely lead to higher levels of increase than modeled.  

Climate impacts have shown to be increasing the severity of fires across California  

(Miller & Safford 2012) as well as fire occurrence in California (Westerling & Bryant 2008).  

For weather-driven fire on the central California coast (Moritz 1997) increasing temperatures 
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could lead to lead to further increases in wildfire activity. Although it is uncertain how 

precipitation may change regionally across California within the next century (Cayan et al. 

2008) the sensitivity of the modeled output to changes in land cover indicate that  increases in 

nonpoint source pollutants to the nearshore are coupled with increased occurrence and 

severity of wildfire.  

Coastal California water quality management plans include the marine ecosystem as a 

“beneficial use” (State of California Central Coast Regional Water Quality Control Board 

2002) while post-fire emergency assessments do not (SEAT 2008; USDA Forest Service 

2010). A wildfire occurring within the in Morro Bay south of Big Sur is considered a situation 

in which water quality standards (TMDLs) are will not be met (State of California Central 

Coast Regional Water Quality Control Board 2002). Therefore, it should also be important to 

consider the nearshore ecosystem as a “value at risk” for fire-prone coastal wildland areas.  

 

 6. Conclusion 

 

Understanding the impacts of increases in wildfire on ecosystems is important 

especially when considering coupled ecosystems of coastal watersheds and the nearshore 

environment. Recent research has shown the effects of fire on a threatened marine mammal in 

the nearshore ecosystem and fires that burn in watersheds adjacent to nearshore ecosystems 

impact the marine habitat by increasing nonpoint source pollutants above pre-fire levels. This 

research links the severity of wildfire to land cover changes that subsequently increase exports 

of pollutants and sediment to the nearshore environment. Not only is it replicable across other 

watersheds, it also indicates that terrestrial land management revolving around wildfire, 

including suppression, thinning, post-fire rehabilitation, and other activities changing land 
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cover at a landscape scale, can be assessed for potential impacts to the nearshore environment. 

Coupling terrestrial and nearshore marine ecosystems in such a way may provide considerable 

insight to terrestrial impacts on the health and welfare of marine species at risk.
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Figures & Tables 

Figure 2.1. Basins and sample points in the Big Sur region of coastal central California. 

Burned basins are in bold. 
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Figure 2.2. OpenNSPECT pollutant concentration estimation process (NOAA 2012). 

Shading represents output dataset (continued on next page). 
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Figure 2.2. OpenNSPECT pollutant concentration estimation process (NOAA 2012). Shading 

represents output dataset (continued from previous page). 
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Figure 2.3. Burned and unburned land cover transitions in (a.) forest, (b.) shrub, and (c.) grass 

cover over the study period (2005 – 2012). Envelopes represent the average error of 

commission as a percent for each class.  
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Figure 2.4. Percent change in export based on pre-fire average (2005 – 2007) for both burned 

and unburned basins. Within burned areas, 2008 only includes the burned basins and pre-fire 

baseline from basin affected by the Basin Complex fire.   
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Figure 2.5.  Distributions of dNBR per land cover transition. FG = forest to grass, FS = forest 

to shrub, and SG = shrub to grass. 
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Table 2.1. Basins within the study area from north to south and fire impacts including fire 

name, percent area burned, percent high severity (calculated as percent high severity of 

percent area burned), and Severity Metric (SM). Basins in bold are considered to be the 

burned basins for analysis and were > 75 % burned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basin Area (km2) Fire

% Area 

Burned

% High 

Severity 

(HS) SM

Bixby Creek 66.2 Basin 3.5 1.8 0.3772

Little Sur River 102.9 Basin 87.1 39.1 0.3954

Big Sur River 148.5 Basin 91.9 38.0 0.3783

Partington Creek North 16.5 Basin 9.5 0.2 0.178

Partington Creek South 65.1 Basin 92.5 29.5 0.3283

Big Creek 55.7 Basin/Chalk 1.0 0.2 0.2892

Limekiln Creek North 22.0 Chalk 1.4 0.3 0.3209

Limekiln Creek Middle 23.7 Chalk 98.8 19.4 0.2903

Limekiln Creek South 52.2 Chalk 21.8 7.4 0.3545

Willow Creek 41.0 0 0 0

Salmon Creek 70.3 0 0 0

San Carpoforo Creek 90.6 0 0 0

Little Pico Creek 14.2 0 0 0

Arroyo De La Laguna/ Burnett Creek 107.9 0 0 0
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Table 2.2. Spearman Rank correlations (r) between fire metrics and percent changes in 

modeled annual concentrations of nonpoint source pollutants for the two periods of post-fire 

year 0 (2006 – 2008) and post-fire year 1 (2006 – 2009). Values in bold are significant at the 

p < 0.01 level. 

     Post-fire year 0  

      Δ Phosphorus  Δ TSS Δ Sediment Δ Runoff 

HS 0.82 0.83 0.75 0.72 

SM 0.75 0.89 0.76 0.75 

FL 0.89 0.84 0.89 0.44 

SL 0.72 0.81 0.73 0.88 

     Post-fire year 1 

      Δ Phosphorus  Δ TSS Δ Sediment Δ Runoff 

HS 0.88 0.87 0.87 0.33 

SM 0.82 0.81 0.85 0.37 

FL 0.76 0.76 0.78 0.09 

SL 0.81 0.84 0.82 0.28 
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