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Wildfires shape the distribution and structure of vegetation across the inland northwestern United States. How-
ever, fire activity is expected to increase given the current rate of climate change, with uncertain outcomes. A fire
impact that has not beenwidely addressed is the development of unburned islands; areas within the fire perim-
eter that do not burn. These areas function as critical ecological refugia for biota during or followingwildfires, but
they have been largely ignored inmethodological studies of remote sensing assessing fire severity under the as-
sumption that they will be detected by algorithms for delineating fire perimeters. Our objective was to develop a
model for classifying unburned areaswithinwildfire perimeters usingmoderate resolution satellite (i.e., Landsat)
and ancillary data.We performedfield observations at locations that were unburned or lightly burnedwithin the
perimeters of 12 wildfires that burned in 2012 and 2014, and augmented this with field data previously acquired
on another seven wildfires across the study region. We used randomForest and classification trees to separate
burned from unburned locations with high overall classification accuracy (91.7% and 89.2%, for randomForest
and classification tree methods respectively). Classification accuracy was significantly higher than the semi-au-
tomated classification products from the Monitoring Trends in Burn Severity (MTBS) program. After application
of themost parsimonious and accurate classification treemodel, we found that the average unburned proportion
of the fires was 20% with high variability between fires (standard deviation: 16.4%). The total area of unburned
islands in non-forested areaswas significantly higher than the total unburned area in forested areas. Accurate de-
tection and delineation of unburned areas is increasingly critical, as some of these unburned areas contain habitat
(i.e., wildfire refugia) that are crucial for maintaining biodiversity and functioning of ecosystems, particularly
given observed and projected anthropogenic climate change.
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1. Introduction

Wildfires are one of the primary ecological change agents across the
forests and rangelands of the inland Pacific Northwest (Agee, 1993). Cli-
mate change is projected to cause increases inwildfire activity in this re-
gion (Littell et al., 2010; Spracklen et al., 2009), with altered fire regimes
likely to affect availability of ecosystem services, habitat connectivity,
and forest regrowth. For example, in 2014 Washington State experi-
enced its largest wildfire in recorded history (i.e., the 104,000 ha
Carlton Complex), a record that was subsequently broken in 2015
by the even larger Okanogan Complex fires (123,000 ha). Wildfires
generally support increased diversity of forest structure across the
landscape, i.e., different successional stages (Kane et al., 2013;
Swanson et al., 2010) and biodiversity (Noss et al., 2006; Roberts et
al., 2008), by burning in a heterogeneous pattern of intensity and sever-
ity across the landscape. However, there is concern that climate change
ns).
may reduce such heterogeneity, with negative ecological impacts
(Kolden et al., 2015a; Savage et al., 2013). Similarly, fire exclusion and
other anthropogenic influences can alter fire regimes and burn severity
(Becker and Lutz, in press) leading to ecosystems with reduced ecolog-
ical functioning and increased vulnerability to future disturbances
(Smith et al., 2014; Smith et al., 2016). Given the potential for external
drivers to fundamentally alter fire regimes and ecosystem vulnerability,
there is a critical need to identify metrics of fire resilience (“fire nor-
mals”) that can be quantified and monitored objectively over time
(Lutz et al., 2011; van Wagtendonk and Lutz, 2007).

There has been considerable literature published in the last two de-
cades on detection of burn severity and fire effects from remote sensing.
These studies have focused on identifying spectral sensitivity to fire ef-
fects, with some of the more recent work (e.g., Cansler and McKenzie,
2012; Kolden and Rogan, 2013) exploring novel approaches and the
application of indices developed from earlier work to new biomes.
Somewhat consistently, however, the vast majority of these studies
have focused on classification of burned pixels within a fire perimeter.
What remains unresolved is the sensitivity of indices at the interface
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between completely unburned locations within the fire, and just barely
burned locations within the fire (i.e., very low severity) such that this
distinction could be made spectrally. Kolden et al. (2012) highlight the
challenges of spectrally discriminating the unburned forest from the
lightly burned; these include canopy obstruction of fire effects in the
sub-canopy, spectral mixing within pixels, illumination angle differ-
ences and/or phenological mismatch between pre- and post-fire scenes
that obscures fire effects, and vegetation regeneration obscuring fire
effects.

Landscape heterogeneity is important for ecosystem resilience
(Peterson, 2002). Fire creates landscape mosaics influencing the land-
scape heterogeneity and thereby also the distribution of subsequent
fires (Parks et al., 2015; Thompson et al., 2007). One potential metric
of landscape resilience that has been suggested, but not widely
addressed, is the unburned area where pre-fire conditions remain
unchanged within a wildfire perimeter. Unburned islands that are
associated with critical habitat where biota can persist (e.g., old
growth forest patches) and/or provide seed sources for adjacent
burned areas are defined as wildfire refugia (Camp et al., 1997;
Swengel and Swengel, 2007). These areas also provide shelter for a
range of fauna post-fire and can reduce detrimental impacts on hy-
drology and erosion, however, increased burn severity due to anom-
alously hot and dry weather can lead to a decrease in unburned areas
within the fire perimeter (Kane et al., 2015a; Kolden et al., 2015a).
Therefore, accurate detection of unburned islands is important,
both for natural resource management focused on maintaining or
promoting wildfire refugia on the landscape and for ecological
research that seeks to understand wildfire impacts. Although low-
intensity fires can maintain fire-resistant vegetation and support
fire refugia in addition to unburned islands, mapping of unburned
islands is a conservative approach to identifying fire refugia.

Moderate resolution satellite sensors, such as the Landsat Thematic
Mapper (TM) and its successors, have been employed for detecting
ecological disturbances and monitoring wildfire impacts since 1982
(e.g., White et al., 1996). Progress in remote sensing of wildfire extent
and effects includes development of the Normalized Burn Ratio (NBR),
a spectral index that is calculated from near infrared and shortwave in-
frared bands and is sensitive to decreases in photosynthetically active
vegetation, increases in mineral soil, and decreases in soil moisture
(i.e., proportional to the degree of environmental change caused by
the fire; Key and Benson, 2006). Although the NBR has been criticized
as sub-optimal index for assessing burn severity (Roy et al., 2006), the
NBR and the difference between pre-fire and post-fire NBR (dNBR;
Key and Benson, 2006) are widely used for detection of effects of wild-
land fires and other disturbances across the US and elsewhere (e.g., De
Santis and Chuvieco, 2007; Sparks et al., 2015). More recently, a relativ-
ized dNBR index (RdNBR) has been proposed by Miller and Thode
(2007), that adjusts dNBR for the level of pre-fire vegetation, and has
improved burn severity estimation in California and the southwestern
United States (Miller et al., 2009a), although not necessarily across all
forest types in the US (Cansler and McKenzie, 2012). These indices
have been correlated to various field measures of fire effects, including
both specific forest biometrics (e.g., Miller et al., 2009a) and composite
measures at equivalent spatial extents (e.g., Key and Benson, 2006).
They have also been assessed for accuracy in identifying the perimeter
of wildfire burned area (Kolden and Weisberg, 2007; Sparks et al.,
2015), but not yet for delineating unburned areas within the fire.

The Monitoring Trends in Burn Severity (MTBS) project (http://
www.mtbs.gov/; accessed March 2nd 2016) creates burn severity
maps for fires ≥405 ha (1000 acres) in the western United States and
≥202 ha (500 acres) in the eastern United States using Landsat TM
data from 1984 to the present using a semi-automated image analysis
approach (Eidenshink et al., 2007). MTBS data includes thematic burn
severity maps with categories of unburned, low severity, moderate se-
verity, high severity, and advanced greenness, however, the classifica-
tion thresholds are determined subjectively in an inconsistent manner
(Kolden et al., 2015b). Because MTBS is arguably the most widely used
burn severity data set (e.g., Hicke et al., 2013), identifying algorithmic
improvements in severity threshold determination could have broad
applicability.

Most recent research in satellite-detected burn severity has focused
on higher severity fire (e.g., Dillon et al., 2011; Lutz et al., 2009; Miller
et al., 2009b), while the lower end of the burn severity spectrum has
largely been understudied (Kolden et al., 2012). The unburned area,
and hence the ecological resilience within fire perimeters, can be sub-
stantial. Abatzoglou and Kolden (2013) and Kolden et al. (2012,
2015a) found that delineation of unburned area from MTBS averaged
between 20% and 25% across ecoregions of the western United States.
These analyses relied on classified dNBR severity data using two dif-
ferent methods, both of which were highly subjective. Kolden et al.
(2012, 2015a) used the arbitrary thresholds recommended by Key
and Benson (2006), while Abatzoglou and Kolden (2013) used the
unburned class derived from the semi-automated and subjective
classification method employed by MTBS. To-date, there has been
no quantitative analysis identifying the most accurate method for
delineation of unburned islands from spectral data.

Our objectives in this study were to 1) accurately classify unburned
islands within fire perimeters, 2) quantify the increase in accuracy over
methods utilized in prior efforts focused more broadly on burn severity
(i.e., MTBS), and 3) quantify the unburned proportion of the analyzed
wildfires. We sampled unburned-to-low severity field sites within 12
recent fires throughout the inland Pacific Northwest of the US and
used plot data from previous studies of seven additional fires.We inves-
tigated two non-parametric methods (Classification and Regression
Trees; Breiman et al., 1984 and Random Forests; Breiman, 2001) to de-
lineate burned from unburned areas, using both Landsat-derived and
topographic variables as potential predictors of unburned islands. We
then applied our most accurate model to delineate unburned islands
across all fires, and compared our classification to the subjective the-
matic maps produced by MTBS.

2. Methods

2.1. Study area

The study area covers the inland Pacific Northwest (Washington, Or-
egon, and Idaho), and includes 19 large fires that burned from 2006 to
2014 (Fig. 1). We sampled within 12 fires that burned in 2012 and
2014 (Table 1) and also acquired existing field data from prior studies
of seven other fires that used equivalent protocols (Table 2) to increase
both the number of plots and the range of burning conditions, as both
2012 and 2014 were regional fire years and represent climatic anoma-
lies. Within the study area, vegetation varies from shrub and grassland
communities at lower elevations to mixed-conifer forests at middle el-
evations to subalpine fir and Engelmann spruce forests at higher eleva-
tions (Franklin and Dyrness, 1988). The topography ranges from high
elevation mountains of the Cascades to large, relatively topographically
flat basins and rolling hills east of the Cascades that eventually meet the
mountainous areas of theNorthern RockyMountains to the east (Fig. 1).
The climate in the inland Pacific Northwest ranges from semi-arid
steppe in the Columbia (WA) and Harney (OR) Basins to more mesic
and cooler conditions in the Cascades Mountains along the western pe-
rimeter and the Rocky Mountains along the eastern edge.

2.2. Field data collection

In 2013 and2015,we collectedfield data from12fires that burned in
2012 and 2014. Fires were selected to span a range of vegetation types
including grasslands and shrublands as well as early seral and mature
closed canopy forest. Additional selection criteria included accessibility
(sampling occurred primarily on state and federal ownership lands) and
availability of cloud-free Landsat pre-fire and post-fire scenes. To
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Fig. 1. Sampled fires in this study (the inset shows the location of the map in the United States).
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minimize effects from edges, roads, and spatial autocorrelation, we gen-
erated randomly located field sampling locations that satisfied the fol-
lowing constraints: 1) N100 m from any other sampling location, 2)
Table 1
Summary of fire names, fire start dates, field plot numbers, and Landsat scenes used to detect un
unburned areas.

Fire name (state) Abrev. Area
(ha)

Year Start fire
date

No. of plots Pa

Burned Un-burned

Buzzard complex (OR) BUZ 160,153 2014 14 Jul 2 7 43
Big Cougar Fire (ID) BCF 26,385 2014 2 Aug 6 4 42
Ochoco Complex (OR) OCH 5067 2014 13 Jul 18 12 44
South Fork Complex (OR) SFC 26,782 2014 1 Aug 13 9 44
Sunflower (OR) SUN 2904 2014 14 Jul 30 0 44
Waterman Complex (OR) WAT 5067 2014 11 Jul 47 2 44
Carlton Complex (WA) CAR 103,643 2014 14 Jul 103 2 45
Snag Canyon (WA) SNC 12,599 2014 2 Aug 17 4 45
Chiwaukum Complex
(WA)

CHI 5099 2014 15 Jul 37 3 45

Sheep (ID) SHP 19,678 2012 6 Sept 15 12 42
Cache Creek (OR) CCHCR 29,824 2012 20 Aug 18 36 42
Trinity Ridge Complex
(ID)

TRNY 59,421 2012 3 Aug 3 30 41
N100m inside the fire perimeter, 3) N50m from any road, and 4) locat-
ed in areas that appeared to be unburned by visually inspecting pre-fire
and post-fire Landsat scenes. We loaded all candidate locations into a
burned areas for plot data that was purposely collected for this study and placed in low or

th/row Sensor (image acquisition day of year and year)

Pre-fire image
(immediate)

Post-fire image
(immediate)

Pre-fire image
(1-year)

Post-fire image
(1-year)

/30 TM8(243-2013) TM8(246-2014) TM8(182-2014) TM8(201-2015)
/28 TM8(204-2013) TM8(239-2014) TM8(191-2014) TM8(210-2015)
/29 TM8(243-2013) TM8(253-2014) TM8(157-2014) TM8(176-2015)
/29 TM8(250-2013) TM8(253-2014) TM8(157-2014) TM8(176-2015)
/29 TM8(250-2013) TM8(253-2014) TM8(157-2014) TM8(176-2015)
/29 TM8(250-2013) TM8(253-2014) TM8(157-2014) TM8(176-2015)
/26 ETM+(201-2013) TM8(244-2014) TM8(196-2014) TM8(183-2015)
/27 TM8(225-2013) TM8(244-2014) TM8(196-2014) TM8(183-2015)
/27 TM8(225-2013) TM8(244-2014) TM8(196-2014) TM8(183-2015)

/28 TM5(247-2011) ETM+(274-2012) TM5(215-2011) TM8(156-2013)
/28 TM5(247-2011) ETM+(274-2012) TM5(215-2011) TM8(156-2013)
/30 TM5(272-2011) ETM+(251-2012) TM5(224-2011) TM8(181-2013)



Table 2
Summary of fire names, fire start dates, field plot numbers, and Landsat scenes used to detect unburned areas for plot data collected not purposely for this study and spanning a broader
burn severity range than the fires listed in Table 1.

Fire name (state) Abrev. Area
(ha)

Year Start fire
date

No. of plots Path/row Sensor (image acquisition day of year and year)

Burned Un-burned Pre-fire image
(immediate)

Post-fire image
(immediate)

Pre-fire image
(1-year)

Post-fire image
(1-year)

South Cle Elum Ridge (WA) CLE 362 2014 7 Aug 36 0 45/27 TM8(225-2013) TM8(244-2014) TM8(196-2014) TM8(183-2015)
Pole Creek (OR) PC 10,844 2012 9 Sept 68 5 45/29 TM5(300-2011) ETM+(279-2012) TM5(188-2011) TM8(161-1013)
Wenatchee Complex (WA) WCF 22,780 2012 9 Sept 115 7 45/27 TM5(252-2011) ETM+(279-2012) TM5(236-2011) TM8(161-2013)
Camel Humps (WA) CAMH 53 2008 Jul 23 5 46/26 TM5(245-2007) TM5(251-2008) TM5(248-2007) TM5(253-2009
Artic Creek (WA) ARCR 35 2008 Jul 19 5 46/26 TM5(245-2007) TM(251-2008) TM5(248-2007) TM5(253-2009
Flick Creek (WA) FLCR 2856 2006 26 Jul 99 0 45/26 TM5(219-2005) TM5(270-2006) TM5(219-2005) TM5(209-2007)
Tripod (WA) TRIP 70,753 2006 24 Jul 53 3 45/26 TM5(219-2005) TM5(270-2006) TM5(219-2005) TM5(209-2007)
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handheld GPS and field crews navigated to as many as these plots as
was possible given constraints of safety, accessibility, and time. Once
field crews had navigated to each candidate location, they assessed
whether the plot (30 m × 30m) was located in an area of relatively ho-
mogenous vegetation and burn severity category. If not, theymoved the
minimum distance required to relocate the plot center such that the
plotwouldmeet the criteria of Key and Benson (2006), i.e., representing
the range of variability found at the site and falling within a larger ho-
mogeneous area of the same burn severity.

Plots were established following the Composite Burn Index (CBI)
protocol described in Key and Benson (2006). The CBI is an aggregate
measure of fire effects that is specifically meant to calibrate Landsat
spectral indices; it is a composite score ranging from 0 to 3 of several
ocularly-estimated fire effects ratings for different strata of the vegeta-
tion in the plot, where zero is equivalent to unburned and three is the
maximum fire-induced change (Key and Benson, 2006). In addition to
the CBI protocol, we collected vegetation structure and species informa-
tion at each plot. The plot location was collected by a Garmin WAAS-
enabled (Wide Area Augmentation System) GPS (Model Etrex 30)
for at least 15 min at the center of each plot.

Although we were targeting unburned areas for plot establishment
through pre-field stratification of plots by visual assessment of Landsat
data, we ultimately collected field data in 121 plots that were unburned
and 309 plots that were somewhat affected by fire. Due to time
constraints and accessibility issues, some larger fires had lower plot
numbers than targeted (e.g., the Buzzard Complex). To increase the
number of truly unburned plots, we used field data from 438 plots
from seven other recent fires (i.e., Bleeker, 2015; Cansler and
McKenzie, 2012; Table 2). This resulted in 868 plots across 19wildfires
(Tables 1 and 2). We reclassified the plots into unburned (plots with a
CBI score equal to 0) and burned plots (plots with a CBI score N 0) for
further analysis (Fig. 2).
Fig. 2. Workflow indicating the actions performed in this study. CBI: Composite Burn
Index.
2.3. Landsat, topographic, and vegetation data

We obtained Climate Data Record (CDR) Landsat scenes that were
processed to surface reflectance from the USGS EarthExplorer
(http://earthexplorer.usgs.gov, accessed 29 September 2015) (Fig. 2).
All CDR scenes were Level 1T (L1T) terrain-corrected Landsat data
that were atmospherically corrected by the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS; Masek et al., 2006). In
addition to the processing of the data to at-surface reflectance, CDR
scenes include an automatically generated cloud and cloud shadow
mask (CFmask; Zhu and Woodcock, 2012) that was used to mask
image portions that contained clouds and cloud shadows that obscured
the Earth's surface in the imagery.

We obtained two scene pairs for each fire (Tables 1 and 2). The first
scene pair was acquired approximately one-year before the fire (pre-
fire) andwithin the same year as the fire (post-fire) as close to anniver-
sary dates as possible, and is referred to as immediate post-fire (Fig. 3).
The second image pair was acquired during the same growing season
(usually July or August) as the fire (pre-fire) and approximately one
year following the fire (post-fire) as close to anniversary dates as possi-
ble, and is referred to as 1-year post-fire (Fig. 3). Both image timing pe-
riods are generally used in post-fire ecosystem analyses, although the
Burned Area Emergency Response (BAER) (http://www.fs.fed.us/
biology/watershed/burnareas/index.html; accessed March 2nd 2016)
program generally uses the immediate post-fire imagery pair for imme-
diate post-fire effects assessments and soil erosion prevention, whereas
the MTBS program generally uses 1-year post fire imagery to be able to
capture the amore complete range of effects of thefire, as treemortality
often occurs in themonths following a wildfire (Eidenshink et al., 2007;
Key, 2006).

To separate the unburned from the burned pixel locations, we
transformed the Landsat reflectance to several indices that have
been shown to be sensitive to vegetation and ecological disturbances
(Table 3). These indices include the Normalized Burn Ratio (NBR;
Key and Benson, 2006), Normalized Differenced Vegetation Index
(NDVI; Tucker, 1979), the Band 5/Band 4 ratio (B5B4; Vogelmann,
1990; Vogelmann and Rock, 1988), the Normalized Differenced Mois-
ture Index (NDMI; Wilson and Sader, 2002), and the Tasseled Cap
Brightness (TCBRI), Wetness (TCWET), and Greenness (TCGRE) (Crist,
1985; see Table 3 for formulae). Because the Landsat band numbers
changed with Landsat Operational Land Imager (OLI), we used the ap-
propriate bands equivalent to the wavelength centers associated with
TM (i.e., B5B4 was calculated using Band 6 and Band 5 from OLI), and
hereafter use TM band naming conventions for continuity. In addition
to the post-fire indices, we also calculated differenced indices to repre-
sent changes from pre- to post-fire. As differenced images include veg-
etation that is often in different phenological stages in the two temporal
windows in addition to any wildfire impacts, we corrected for pheno-
logical differences for each index by subtracting the mode of the
differenced values of the undisturbed natural vegetation (i.e., excluding
agricultural and urban areas) outside of thefire perimeter followingKey

http://earthexplorer.usgs.gov
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Fig. 3. Illustration of the timing of image acquisition datewith respect to the fire event,modified fromKey and Benson (2006). Both the immediate and 1-year post-fire Landsat image pairs
were used in this study.
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(2006). For example, the corrected, differenced NBR (dNBRcorr) was
calculated as follows:

dNBRcorr ¼ NBRprefire−NBRpostfire
� �

−Mode NBRprefire−NBRpostfire
� � ð1Þ

where Mode(NBRprefire − NBRpostfire) is the mode (or histogram peak)
value of the differenced NBR surrounding the fire perimeter (Fig. S1).
We clipped all data layers to a rectangular window of approximately
500 pixels (or 15 km) in all directions away from the furthest fire pe-
rimeter extent in each cardinal direction to calculate the undisturbed
mode of the differenced NBR value. The phenological correction im-
proved the relationship between dNBR and field measured burn sever-
ity over uncorrected dNBR (Fig. S2). All subsequent analyses utilizing
differenced indices were conducted with phenologically-corrected
data, including the Relative differenced. Normalized Burn Ratio
(RdNBR; Miller and Thode, 2007, Table 2).

Because both vegetation type and topography are related to burn
severity across the landscape (e.g., Dillon et al., 2011; Hammill and
Table 3
Predictor variables considered in the classification (bands (B) refer to TM band order).

Index Abbrev. Formula

Remotely sensed
indices

Normalized burn ratio NBR (B4 − B7)
(B4 + B7)

Normalized difference
vegetation index

NDVI (B4 − B3)
(B4 + B3)

Band5/Band4 ratio B5B4 B5 / B4

Normalized difference
moisture index

NDMI (B4 − B5)
(B4 + B5)

Tasseled cap brightness TCBRI 0.2043 ∗ B1 + 0.4158 ∗ B2
+ 0.5741 ∗ B4 + 0.3124 ∗

Tasseled cap greenness TCGRE −0.1603 ∗ B1 − 0.2819 ∗ B
+ 0.7940 ∗ B4 − 0.0002 ∗

Tasseled cap wetness TCWET 0.0315 ∗ B1 + 0.2021 ∗ B2
+ 0.1594 ∗ B4 − 0.6806 ∗

Relative differenced
normalized burn ratio

RdNBR ðNBRprefire−NBRpostfireffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBRprefire=1000

p

Topographic
indices

Slope SLOPE Slope in degrees
Cosine of Aspect cosASPECT cos(Aspect)

Transformed aspect TRASP 1 − cos ∗ (PI / 180) ∗ Aspe

Southwestern aspect SWASP cos((45 − Aspect / PI)) +

Slope cosine aspect SCOSA Slope ∗ cos(Aspect)
Bradstock, 2006), these characteristics might be important for locating
unburned areas as well. Therefore, we obtained topographic and
vegetation data from the LANDFIRE program (Rollins, 2009) that was
available for the entire the study area. Topographic data included
elevation, slope, and aspect. Vegetation data included the LANDFIRE
Existing Vegetation Type (EVT) product for 2012 (Version: lf 1.3.0,
www.LANDFIRE.gov, accessed: 30 September 2015).We selected a lim-
ited number topographical indices that were successfully used in previ-
ous studies to calculate explanatory variables for input into a
classification analysis, including slope (SLOPE), the cosine of the aspect
(cosASPECT), transformed aspect (TRASP; Roberts and Cooper, 1989),
southwestern aspect (SWASP; Ohmann and Spies, 1998), and an in-
teraction coefficient of the slope and aspect (SCOSA; Stage, 1976)
(Table 3). LANDFIRE EVT life form attributes were used to stratify
both plots (for model development) and imagery (for prediction) into
forested and non-forested classes. The non-forested class included the
EVT classes of herb, shrub, water, barren, and developed, while the for-
ested class only included the tree class.
Notes Reference

Sensitive to wildfire effects to
ecosystems

Key and Benson, 2006

Sensitive to green (healthy)
vegetation

Tucker, 1979

Sensitive to conifer tree health Vogelmann, 1990,
Vogelmann and
Rock, 1988

Sensitive to canopy water content Wilson and Sader, 2002

+ 0.5524 ∗ B3
B5 + 0.2303 ∗ B7

Sensitive to surface brightness Crist, 1985

2 − 0.4934 ∗ B3
B5 − 0.1446 ∗ B7

Sensitive to vegetation greenness

+ 0.3102 ∗ B3
B5 − 0.6109 ∗ B7

Sensitive to vegetation vigor
(water content)
Sensitive to relative changes
caused by wildfires

Miller and Thode, 2007

Steepness -
Gradient from north to south
facing aspects

-

ct − 30 Gradient from northwestern to
southeastern facing aspects

Roberts and Cooper, 1989

1 Gradient from northwestern to
southeastern facing aspects

Ohmann and Spies, 1998

Interaction coefficient between
slope and aspect

Stage (1976)

http://www.LANDFIRE.gov
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2.4. Classification and accuracy assessment

We used two non-parametric classification techniques to delineate
unburned from burned pixels: Classification and Regression Trees
(CART; Breiman et al., 1984) and Random Forest (RF; Breiman, 2001).
Both techniques are widely used in remote sensing studies and general-
ly achieve high classification accuracies (e.g., Falkowski et al., 2009;
Hudak et al., 2008; Lawrence and Wright, 2001). CART and RF are
non-parametric and are thus unaffected by parametric statistical as-
sumptions (i.e., normality and homoscedasticity). In addition, both
techniques can handle non-linear variable interaction and both categor-
ical and continuous explanatory variables (De'ath and Fabricius, 2000).

Our response variable was a binary variable of either burned or un-
burned, and the explanatory data comprised the Landsat indices for im-
mediate post-fire (indicated with an i), Landsat indices one-year post
fire (indicated with an y), the differenced indices (generated from the
immediate post-fire and one-year post-fire), and the topographic vari-
ables. Even though CART and RF are less sensitive to multicollinearity
(Speybroeck, 2012), we wished to exclude redundant explanatory var-
iables from our modeling approach. Therefore, we selected only indices
that have been used in detecting vegetation dynamics (Table 3) and
used QR matrix decomposition (Becker et al., 1988) to test whether
our explanatory variables exhibited multicollinearity (Falkowski et al.,
2009). None of the explanatory variables showed multicollinearity
and we thus proceeded with all 35 variables in the full model (see
Table 4 for a full list). Subsequently, we ran the classifications for differ-
ent combinations of explanatory variables (i.e., all variables, all variables
excluding immediate post-fire imagery, all variables excluding one-year
post-fire imagery, and only one year post-fire dNBR and RdNBR) to as-
sess the predictive power of using different sets of explanatory variables
related to the timing of data acquisition relative to the timing of the fire.

2.4.1. Classification trees
The CART technique is a recursive partitioning method that uses

binary divisions to split the data until terminal nodes are found given
preset criteria (Breiman et al., 1984). Explanatory variables are analyzed
to find the most accurate split given the reduction in deviance in the
response variable (Lawrence and Wright, 2001). Trees are refined
until a new split does not increase the accuracy of the tree or until a
predetermined number of splits is reached. CART dendrograms are eas-
ily interpretable and easy to apply to large volumes of (remote sensing)
data.

Calculationswere performed in R (version 3.2.3, R Core Team, 2015),
using the rpart package (Version 4.1-10, Therneau et al., 2015). The
rpart package was run in classification mode with an initial complexity
parameter of 0.001. The parsimonious final tree was determined by
pruning the preliminary tree with the 1-standard error (se) rule
Table 4
Overall accuracies for the different classification strategies and explanatory variables separating
the out-of-bag predicted samples (i.e., samples not taken account in themodel generation) and
idation. The highest overall accuracy percentages are indicated in bold.

Method Subset All variablesa All
imm

Combined run (no separation between
forest and non-forest)

RF 91.9% 90.
CART 89.2% 87.

Split run (forest and non-forest run) RF 91.5% 90.
Fb 90.8% 90.
NFc 93.2% 90.

CART 87.9% 88.
Fb 88.8% 88.
NFc 86.0% 86.

a All variables include: aTCBRIi, dTCBRIi, aTCGREi, dTCGREi, aTCWETi, dTCWETi, aNDVIi, dND
dTCGREy, aTCWETy, dTCWETy, aNDVIy, dNDVIy, aNBRy, dNBRy, RdNBRy, aNDWIy, dNDWIy, a
derived from immediate post-fire imagery, y indicating Landsat index derived from approximat
a indicating the Landsat image values after the fire (not differenced).

b Accuracy for the Forested plots only.
c Accuracy for the non-forested plots only.
(De'ath and Fabricius, 2000), where the number of splits was deter-
mined at the one standard error plus the minimum cross-validated
error.

We used a ten-fold cross validation to generate an independent
overall accuracy estimate. The plots that were used for the evaluation
were not used in the creation of the classification tree and were ran-
domly separated into ten approximately equal groups (of ~72 plots).
The classification tree was built using nine of the groups and the classi-
fication accuracy was independently determined using the group that
was left out. This was repeated 10 times, so that every group had an in-
dependent accuracy assessment. The ten individual accuracy assess-
ments were then added together to generate an overall confusion
matrix and accuracy estimate for all plots. Because the classification
trees for each iteration of the cross-validation were slightly different,
we generated the final model from all of the plots.

2.4.2. Random Forest
The RF algorithm uses a bootstrapping approach to parse the data

and then developsmany classification trees (i.e., a forest of classification
trees) to find the best predictor variables. The outcome is a number of
votes for a given class as opposed to a rule-based classification (as in a
CART). Through the bootstrapping approach, RF creates accurate and
unbiased prediction results based upon votes and generally receives
higher classification accuracies than classification trees (Falkowski
et al., 2009).

We used the RF algorithm implemented in R (Version 4.6-12, Liaw
and Wiener, 2002) in classification mode with tree size set to 1000.
The RF algorithm generates an independent out-of-the-bag (OOB)
error estimate through a bootstrapping technique in which the data is
subsampled to calculate a model error rate and confusion matrix from
a subsample (approximately one third) of the data that is not used in
the model generation (Breiman, 2001). To minimize the number of ex-
planatory variables, we calculated the model improvement ratio (MIR;
Murphy et al., 2010), and reduced the explanatory variables used in
the final RF model to the number of explanatory variables as indicated
by the MIR analysis. We report the mean decrease of accuracy (i.e., the
reduction of the percent classification accuracy if a given variable was
removed from the classification) of the tenmost important explanatory
variables of the best models separating the burned and unburned
classes.

2.5. Model application and analysis of unburned areas

Of the 868 total plots, 133 (15.3%) returned no data values from the
immediate post-fire scenes, 51 (5.9%) returned no data values from the
one-year post-fire scenes. Because some plots returned no data in both
immediate and one-year post-fire scenes, 149 out of 868 plot locations
unburned and burned classes. Note that the RandomForest (RF) runs are generated from
the accuracies from the Classification trees (CART) are generated from a 10-fold cross val-

variables excluding
ediate post-fire imagery

All variables excluding
one-year post-fire imagery

One-year post-fire
dNBR and RdNBR only

8% 90.4% 88.0%
8% 88.7% 87.0%
1% 90.2% 87.1%
0% 90.6% 87.8%
5% 89.6% 85.5%
3% 90.1% 85.7%
9% 91.6% 85.5%
9% 86.9% 87.3%

VIi, aNBRi, dNBRi, RdNBRi, aNDWIi, dNDWIi, aB5B4i, dB5B4i, aTCBRIy, dTCBRIy, aTCGREy,
B5B4y, dB5B4y, SLOPE, cosASPECT, TRASP, SWASP, SCOSA with i indicating Landsat index
ely one-year post-fire imagery, d indicating differenced (pre- and post-imagery) index and



Table 5
Confusionmatrices of the (A) combined randomForestmodel, (B) combined classification
treemodel, and (C) themerged burn severity classes by theMonitoring Trends in Burn Se-
verity (MTBS) group separating unburned and burned pixel locations. Note that the
randomForest out-of-bag results and the combined 10-fold cross-validated (independent
evaluation) results are reported for the randomForest and classification tree methods, re-
spectively. Comm.: commission, acc.: accuracy, omis.: omission, and prod.: producer.

A Field observations
Predicted Class Unburned Burned Total Comm. error User acc.

Unburned 74 15 89 16.9% 83.1%
Burned 43 587 630 6.8% 93.2%
Total (pixels) 117 602 719
Omis. error 36.8% 2.5% Overall Acc. = 91.9%
Prod. acc. 63.2% 97.5%

B Field observations
Predicted Class Unburned Burned Total Comm. error User acc.

Unburned 66 27 93 29.0% 71.0%
Burned 51 575 626 8.1% 91.9%
Total (pixels) 117 602 719
Omis. error 43.6% 4.5% Overall Acc. = 89.2%
Prod. acc. 56.4% 95.5%

C Field observations
MTBS Class Unburned Burned Total Comm. error User acc.

Unburned 59 49 108 46.4% 54.6%
Burned 19 240 259 7.3% 92.7%
Total (pixels) 78 289 367
Omis. error 24.4% 17.0% Overall Acc. = 81.5%
Prod. acc. 75.6% 83.0%
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(17.2%) were associated with no data values in either or both temporal
periods and were excluded from the relevant analysis, resulting in 719
total plots remaining. The 719 plot locations contained 498 forested
plots (74 unburned and 424 burned) and 221 non-forest plots (43 un-
burned and 178 burned) as determined from the LANDFIRE EVT data.
The no data values in the immediate post-fire imagery had several
causes. First, there was often still haze and smoke obscuring the site im-
mediately post-fire. Second, the window for capturing cloudless scenes
in the autumn is short in the inland Pacific Northwest due to both the
onset of snow and the shadows associated with late season image ac-
quisition at higher latitudes; scenes are not usable after the end of the
growing season. Third, because five of our fires burned in 2012, a year
when Landsat 7 was the only Landsat sensor acquiring data, we were
forced to use Enhanced TM+ scenes that include swaths of missing
data due to the 2003 failure of the scan line corrector (SLC) for the im-
mediate post-fire imagery (Tables 1 and 2).

We conducted four different CART and four different RF model runs
to test the explanatory power of the timing and different indices of the
Landsat imagery and topographical variables, including: 1) all possible
variables, 2) all possible variables excluding immediate post-fire imag-
ery, 3) all possible variables excluding one-year post-fire imagery, and
4) one-year post-fire dNBR and RdNBR only. The fourth model run
was to test the accuracy of a model when only dNBR and/or RdNBR
are used, as these are the indices that are automatically produced by
MTBS and, thus, are available to a wider potential user group without
remote sensing expertise. To account for the considerable differences
in life form between forests and rangeland areas, we conducted the
four CART and RF runs for a combined classification run that included
all plots and another stratified by forested and non-forested groups.

To compare our classification results to theMTBS-derived classifica-
tion results, we obtained MTBS classified data layers (www.MTBS.gov;
accessed 21 December 2015) for the available fires (CAR, CCHCR,
FLCR, SHP, TRNY, TRIP; Tables 1 and 2). We combined the MTBS low,
medium, and high burn severity classes into a single burned class and
compared that to our field data (note that our field plots did not include
any in the ‘greenup’ class). We calculated a confusion matrix of the plot
data and the MTBS classified data (367 plots; 78 unburned and 289
burned).

We selected themost accuratemodel that was parsimonious and in-
tuitive, to classify unburned areas for all fires. We used our unburned
classification to calculate the proportion of unburned areas by fire size
and by proportion of pre-fire forest using simple linear regression
models and Spearman's rank correlations.

3. Results

3.1. Field data

Althoughwe attempted to purposely place plots for our field visits in
unburned (or areas that had low burn severity) by visually assessing
(immediate) post-fire Landsat imagery, only 28.1% (121 out of 430)
plots experienced no fire consumption (i.e., were unburned, Table 1).
The plots from the seven additional fires included 6.1% (25 out of 438)
plots that were unburned (Table 2). The total set of field validation
data included 146 unburned and 692 burned plots.

3.2. Classification accuracy

The combined run while using all variables of the CART and RF algo-
rithms returned the highest overall accuracy, 91.9% and 89.2% respec-
tively (Table 4). The classification of burned versus unburned using
the RF algorithm generated slightly higher accuracies as compared to
the CART results (Table 4). When using all variables in the combined
run (i.e., not split into forest and non-forest), the RF algorithm returned
a 2.7% higher overall accuracy than the (cross-validated) CART algo-
rithm (Table 5A and B). In addition to building our CART and RFmodels
with the collected plot data, we created different models using over-
and under-sampling to balance the number of unburned and burned
plots to see if we could improve model accuracy and predictive power.
Because the final models were similar (not shown) to the model with
the plot data, we proceeded with the model using the collected plot
data (i.e., we do not present themodels using over- or under-sampling).

The explanatory variables used in the final CART that generated the
highest accuracy (i.e., the combined run with all explanatory variables),
were dNBRy (one-year post-fire dNBR), RdNBRi (immediate post-fire
RdNBR), and the aTCBRIy (one-year post-fire TCBRI) (Fig. 4a). In the
first split, the burned areas separated from the remaining cases using
a dNBRy threshold of ≥23. In the second split unburned areas with
b166 RdNBRi are separated from the remaining pixels. Finally, un-
burned and burned areas were split using a 3490 aTCBRIy threshold.

For the classification tree that generated the highest accuracy
(87.9%) using all variables for the separate forest and non-forest
runs, the dNBRy and aNDVIy were selected for the non-forest CART
(Fig. 4b). The dNBRy threshold of ≥38 separated the burned areas
from the remaining pixels and the aNDVIy b 0.49 were classified as
unburned and aNDVIy ≥ 0.49 were classified as burned. The forest-
only CART used the dNBRy and RdNBRi (Fig. 4c), with the dNBRy
threshold of ≥25 separating the burned areas from the remaining
pixels and the RdNBRi b 166 indicating unburned pixels and ≥166 in-
dicating burned pixels. The two most important explanatory vari-
ables in the combined, all variables RF run were dNBRy and RdNBRi
(Fig. 5a). The non-forest RF run selected the dNBRy and dNDVIy as the
most important explanatory variables (Fig. 5b), while the forest-only
RF run also selected dNBRy and RdNBRi (Fig. 5c).

All-variable models using CART (89.2%) and RF (91.9%) had higher
overall accuracies than the classification accuracy of MTBS (81.5%;
Table 5C). The commission errors of the unburned class (i.e., pixels in-
correctly classified as burned where the field observation indicated un-
burned) were substantially reduced in our classification algorithms
compared to MTBS. The omission errors (i.e., unburned class detected
as burned) of our classification algorithms of the unburned class were
higher than theMTBS classifications. This might be related to the higher
number of burned plots relative to unburned plots and might indicate

http://www.MTBS.gov


Fig. 4. Classification trees for the (a) all plots (combined), (b) non-forest, and (c) forest classifications of unburned and burned pixel locations. d: variable was differenced between a pre-
and post-fire image, a: variablewas taken after (post-)fire, y: one-year post-fire, i: immediate post-fire. Thefinal nodes indicate 0: unburned, 1: burned, no. of plots classified as unburned
and burned, and the percent of plots in that final node. dNBR; differenced Normalized Burn Ratio, RdNBR; Relative differenced Normalized Burn Ratio, TCBRI; tasseled cap brightness.
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that our algorithms were more conservative in detecting unburned
islands than the MTBS program.

3.3. Model application and spatial patterns

Although the CARTs returned slightly lower accuracies compared to
the RF models, the CART models feature easily interpretable class
breaks, are more parsimonious (3–4 variables, as compared to ~25 for
RF), and are more efficient when applied to large datasets. The CART
model derived from all variables (Fig. 4a) was applied to all fires in all
years. When no data values were encountered (more prevalent in the
immediate post-fire imagery), we applied the model that only used
one-year post-fire imagery (Fig. S3).

The mean proportion of unburned area was 19.8% across all fires
(s.d. = 16.4%). The unburned proportion was significantly greater in
the non-forested areas of the fires (26.0%, standard error = 2.4)
Fig. 5. Variable importance plots for (a) all plots (combined), (b) non-forest, and (c) forest rand
10variables are ranked by importance from top to bottom(i.e., the exclusion of the top variable h
between a pre- and post- fire image, a: variable was taken after (post-) fire, y: one-year post-fi
burned, and the percent of plots in that final node. The variable abbreviations are given in Tab
compared to the unburned proportion of the forested area of the fires
(13.2%, standard error = 4.9) (two-sample t-test: t-statistic = −2.34,
df=36, p-value=0.02). Therewas no significant relationship between
the unburned area and fire size (Spearman's rank correlation coeffi-
cient = 0.31, p-value: 0.17; Fig. 6a) and a significant negative relation-
ship between unburned area and the proportion of the fire that was
forested (Spearman's rank correlation coefficient = −0.55, p-value:
0.01; Fig. 6b).

4. Discussion

The primary explanatory variables selected by our algorithms were
variants of the NBR, but we found that using both the immediate and
one-year post-fire imagery increased overall classification accuracy.
While prior efforts to delineate burned fromunburned areahave tended
to assess either immediate post-fire or one-year post-fire data, our CART
omForest classification models to separate unburned from burned pixel locations. The top
as the greatest impact on the accuracy reduction of themodel). d: variablewasdifferenced
re, i: immediate post-fire. The final nodes indicate no. of plots classified as unburned and
le 3.
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Fig. 6. (a) Unburned area versus fire size and (b) forested percentage within the fire
perimeter for each fire.
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and RF methods allowed for multiple years to be selected and demon-
strated that a post-fire multi-temporal approach produced the highest
classification accuracy. This suggests that vegetative regrowth, which
is often occurring in the one-year post-fire scene, can both magnify
and obscure the presence of unburned islands, and the immediate
post-fire scene is needed to clarify where consumption occurred. The
two non-parametric classification methods (CART and RF) generally
outperformed the semi-automatic image interpretation classification
performed by theMTBS program. Ourmethods did provide amore con-
servative estimate of unburned area (i.e., we produced larger omission
errors compared to the MTBS classified products). This corresponds
with our finding during our field campaign that some plots might visu-
ally appear unburned in the satellite imagery but might have experi-
enced some fire effects (see Section 3.1).

Our classification of 19 inland Pacific Northwest fires resulted in
nearly 20% of unburned area within fire perimeters, in agreement
with previous assessments of the unburned proportion being be-
tween one-fifth and one-quarter of the area within fire perimeters
(Abatzoglou and Kolden, 2013; Kolden et al., 2015a; Kolden et al.,
2012). Therefore, studies using the fire perimeter to calculate an
area burned overstate themagnitude of fire impacts. These unburned
areas contain important habitat (Roberts et al., 2008), provide seed
sources for surrounding burned areas, and contribute to overall land-
scape heterogeneity (Peterson, 2002; Robinson et al., 2013). Using
moderate-resolution satellite remote sensing, and in particular the
Landsat system, is valuable for capturing these dynamics across the
landscape.

We suggest CART as the most useful classification method because
its transparency (e.g., it identifies specific classification thresholds), par-
simony, and efficiency when applied to large datasets, makes it more
useful to managers and researchers. However, in future analyses, RF
should be considered when a more accurate method is warranted. In
addition, RF produces a probability rather than a hard classification, es-
sentially calculating an uncertainty assessment (e.g., Rehfeldt et al.,
2009). Our CART method produced a higher classification accuracy
than MTBS, which we hypothesize is at least partially a product of
using a single stationary threshold (e.g., phenologically-corrected
dNBR thresholds) derived from field observations rather than per-fire
image-interpreted class breaks (i.e., such as inMTBS) that lack empirical
relationships with ecological effects of the fire (Kolden et al., 2015b).
The combined CART separated burned pixels from others using a ≥23
dNBRy threshold; this compares to the slightly higher average threshold
of ≥55 dNBR used by the MTBS in the northwestern US, although the
MTBS dNBR value was not phenologically-corrected (Kolden et al.,
2015b). The combined CART further separated unburned from burned
areas using the RdNBRi (threshold: 166), separating areas that might
have rapid revegetation one year following the fire. Finally, the aTCBRI
separated burned from unburned areas, possibly separating out differ-
ent spectral effects related to different vegetation types.

Our findings regarding forests versus non-forests were somewhat
unexpected. We found no improvement of the classification accuracy
when stratifying forested and non-forested regions. The primary reason
for stratifying is the regeneration rate and “greenup” following wildfire
in the two different systems; forested areas generally re-green more
slowly than non-forest areas, where grasses and shrubs are often
rapid resprouters in frequent fire systems. Both one-year post-fire
dNBR and one-year post-fire NDVI (both the differenced and the post-
fire NDVI values) were important variables for determining whether
the non-forested plots were unburned or not (Figs. 4 and 5). For the for-
ested plots, the dNBRy and RdNBRi were the two most important vari-
ables for determining whether the plots were burned or not. Once
these variables were included in the model, the need to stratify plots
by vegetation type was not necessary. However, our total number of
non-forest plots was much smaller than the number of forest plots,
and an increased sample size in non-forest areas may ultimately yield
improved accuracy in classification through stratification.

There was also no clear pattern of increased or decreased detection
accuracy of unburned areas within forest versus non-forest areas. Al-
though overstory canopy can obscure low severity fire effects from pas-
sive satellite imagery (Kane et al., 2014), rapid recovery and re-greening
of non-forest areas might also reduce classification accuracy. Non-for-
ested areas, however, exhibited a greater proportion of unburned area
than forested areas. This may be attributed to either less fuel continuity
in non-forested areas (e.g., the BUZ fire contained very sparse vegeta-
tion cover and was ~60% unburned) as opposed to forested areas that
generally havemore fuel continuity, or it may be attributed to the dom-
inantfire behavior in non-forested regions. Many of the fires in non-for-
ested ecotypes are wind-driven fires and those fires may produce the
types of rapid directions shifts and erratic fire behavior that promote
creation of large unburned islands (Kolden et al., 2015a).

Phenologically-corrected spectral indices of the unburned portion of
the imagery improved the consistency of application of the differenced
vegetation index. The coefficient of determination of the non-linear re-
lationship between the CBI and the one-year post-fire dNBR improved
0.03 (4.5%) when using the phenologically-corrected dNBR as opposed
to the uncorrected dNBR (Fig. S2). While it has been suggested that
mean values of unburned areas around the fire can be used to correct
for phenology (Key, 2006), we suggest using the mode rather than the
mean of the undisturbed surrounding pixels. This is because some
areas (especially agricultural areas) can have significant changes in
the pre- and post-fire NBR unrelated to the fire or natural vegetation
phenology, possibly leading to an incorrect calculation of the phenolog-
ical offset of natural areas between the two image dates.

We could not find any strong relationship between topographical
variables and whether a plot was burned or not. Because there are
many reasons of why an area will not burn (Kolden et al., 2012), there
might not be a universal pattern (e.g., always on a north facing slope)
related to topography or vegetation type that can be attributed to the
chance of an area being unburned. However, patterns of burn severity
likely influence probability of burning in topographical positions of cer-
tain unburned areaswithin given vegetation types. For instance, several
recent studies found either improved accuracy in burn severity model-
ing when topography was included (Barrett et al., 2010; De Santis and
Chuvieco, 2009; Kane et al., 2015b) or the strong influence of topogra-
phy on burn severity (e.g., Birch et al., 2015; Dillon et al., 2011).
Although we did not find much predictive power in topographical
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variables for detecting unburned areas, further analysis of a larger and
longer-term database of wall-to-wall unburned areas could reveal pat-
terns of certain locations of unburned areas across the landscape.

We list five considerations for future research related to our study.
The first consideration is theminimum size requirement to be classified
as an unburned area. Landsat has a spatial resolution of 30-m, but a
given pixel can include sub-pixel unburned patches. As such, unburned
areas that are considerably smaller than a Landsat pixel (900 m2) are
unlikely to be detected by our algorithms. Second, the inclusion of the
shortwave infrared bands on the Landsat sensor platform is important
for unburned area detection as revealed by the selected explanatory
variables. However, we did not test every single available index or spec-
tral band to reduce data redundancy. An analysis of displacementwithin
spectral space as recommended by Roy et al. (2006) and Trigg and
Flasse (2001), the assessment of hyperspectral data (e.g., van
Wagtendonk et al., 2004), or the inclusion of LiDAR data (Kane et al.,
2014) might further improve the delineation of unburned pixels.
Third, the goal of the present study was to classify unburned pixels in
order that those pixels could be aggregated to map unburned patches;
but uncertainty remains as to how accurately the extent and edges of
larger unburned patches are delineated using this methodology. This
was beyond the scope of our research and would require a validation
data set that does not currently exist and would be difficult to acquire
given the limitations for mapping fire edges (Kolden et al., 2012;
Kolden andWeisberg, 2007). Fourth, we are unsure about the accuracy
of the registration of the pixel to the plot location. Interpolation of mul-
tiple pixels adjacent to the plot location or using a plot layout designed
to relate spectral data from Landsat to the field situation (e.g., Hudak et
al., 2007) might further improve our results. Fifth, our approach is de-
pendent upon readily available fire perimeters, which are currently
available nationally in the US and Canada. For this model to be applied
elsewhere it should be combined with automated fire perimeter delin-
eation algorithms (e.g., Kolden andWeisberg, 2007; Sparks et al., 2015).

5. Conclusion

Unburned areas are critical for ecosystem functioning and we found
that nearly 20% of the area within the fires we studied remained un-
burned, consistent with prior findings. We focused on spectrally delin-
eating unburned islands within wildfires, in contrast to both earlier
research focusing purely on fire perimeter edges and more recent wild-
fire research that has focused on quantifying and classifying higher-se-
verity effects of fires (e.g., Cansler and McKenzie, 2012; Dillon et al.,
2011;Miller et al., 2009b).Wewere able to detect unburned areaswith-
in differentfireswith a high overall classification accuracy using both RF
and CARTs that primarily relied upon widely used spectral indices for
assessing fire (i.e., dNBR and RdNBR) andwe achieved the highest accu-
racy when utilizing both immediate and one-year post-fire data.

These unburned islands contain important habitat, serve as seed
sources for post-fire propagation, and are ecologically important for
maintaining biodiversity and ecological functioning of the ecosystems
(Kolden et al., 2015a). These results will facilitate the development of a
consistent historical unburned islands database for the region, yielding
a wide array of applications and analyses of landscape patch dynamics,
seed source evaluation, late-successional fire refugia mapping, and eco-
system resilience. Similar approaches should be undertaken for any
ecoregion where a similar database is desired to investigate changes in
and characteristics of unburned islands as a metric of wildfire resilience.
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