
Evaluating the Mid-Infrared Bi-spectral Index for improved
assessment of low-severity fire effects in a conifer forest

T. Ryan McCarleyA,C, Alistair M. S. SmithA, Crystal A. KoldenA and
Jason KreitlerB

AUniversity of Idaho, Department of Forest, Rangeland, and Fire Sciences, Moscow,

ID, 83843, USA.
BUS Geological Survey, Western Geographic Science Center, Boise, ID, 83706, USA.
CCorresponding author. Email: tmccarley@uidaho.edu

Abstract. Remote sensing products provide a vital understanding of wildfire effects across a landscape, but detection 
and delineation of low- and mixed-severity fire remain difficult. Although data provided by the Monitoring Trends in Burn 
Severity (MTBS) project are frequently used to assess severity in the United States, alternative indices can offer 
improvement in the measurement of low-severity fire effects and would be beneficial for future product development and 
adoption. This research note evaluated one such alternative, the Mid-Infrared Bi-Spectral Index (MIRBI), which was 
developed in savannah ecosystems to isolate spectral changes caused by burning and reduce noise from other factors. 
MIRBI, differenced MIRBI (dMIRBI) and burn severity indices used by MTBS were assessed for spectral optimality at 
distinguishing severity and the ability to differentiate between unburned and burned canopy in a conifer forest. The MIRBI 
indices were better at isolating changes caused by burning and demonstrated higher spectral separability, particularly at 
low severity. These findings suggest that MIRBI indices can provide an enhanced alternative or complement to current 
MTBS products in high-canopy-cover forests for applications such as discernment of fire perimeters and unburned islands, 
as well as identification of low-severity fire effects.
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Introduction

As the number of large, destructive, so-called ‘megafires’
increases in the US (Stephens et al. 2014; Bowman et al. 2017),

it is critical to ensure that national data products utilised for
science, policy and decision-making are of the highest accuracy
and most appropriate for wildfire management needs. Remote

sensing is an important tool for understanding the effects of
wildfires at landscape scales (Lentile et al. 2006). However,
the accurate characterisation of low- to moderate-severity fires
in high-canopy-cover forests can pose a significant challenge to

spectral remote sensing, given these fires produce the greatest
change in the understorey rather than at the top of the canopy
where changes in reflectance can be more readily observed

(Hudak et al. 2007; Wulder et al. 2009; Kolden et al. 2012;
McCarley et al. 2017b). Furthermore, low-severity fires can
exhibit a wide variation of fire effects within an area of interest,

covering the gamut from small patches of complete combustion
to unburned patches (Smith et al. 2005; Kolden et al. 2012).
Numerous spectral indices have been evaluated to predict

severity (Lentile et al. 2006); the most notable include the
Normalised Burn Ratio (NBR), delta NBR (dNBR) and
relativised dNBR (RdNBR) (López-Garcı́a and Caselles 1991;
Key and Benson 2006; Miller and Thode 2007). These indices

owe a significant part of their popularity to the Monitoring
Trends in Burn Severity project (MTBS; www.mtbs.gov,
accessed 27 April 2018), which provides an archive of dNBR

and RdNBR data for the conterminous United States since 1984
(Eidenshink et al. 2007). Althoughwidely used,MTBSproducts
are not without limitations (Kolden et al. 2015; Sparks et al.

2015), and other indices have outperformed the NBR variants in
certain regions (e.g. Hudak et al. 2007; Sparks et al. 2016;
McCarley et al. 2017b). Furthermore, Roy et al. (2006)
demonstrated that NBR was not an optimal spectral index

based on foundation remote sensing theory, because it is not
insensitive to environmental factors such as soil colour and
atmospheric effects (Verstraete and Pinty 1996); the former

was confirmed and further demonstrated by Smith et al. (2010).
In contrast, the Mid-Infrared Bi-spectral Index (MIRBI) was

specifically developed as a spectrally optimal index, although

it has primarily been used to distinguish burned and unburned
pixels in savannah and rangeland ecosystems (Trigg and Flasse
2001; Smith et al. 2007; Sparks et al. 2015). McCarley et al.

(2017b) found a pre–post-fire differenced version of MIRBI
(dMIRBI) outperformed all other spectral indices when
predicting relative change in canopy cover due to fire. These
preliminary findings suggested that MIRBI could be a useful
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index for distinguishing different levels of fire severity in
forested ecosystems. However, a quantitative analysis of the
spectral optimality and separability of levels of severity has not
yet been performed.

The goal of the present research note was to evaluate MIRBI
against more common NBR-based indices in terms of (1)
spectral optimality for distinguishing severity, and (2) the ability

to distinguish unburned and burned canopy in a conifer forest.
Spectral optimality was tested by plotting indices in bi-spectral
space and visually assessing how index values responded

between unburned and burned samples. A spectral separability
analysis was conducted between different levels of severity
and unburned pixels in order to determine how well indices

distinguished the effects of burning. We utilised a fairly novel
bi-temporal light detection and ranging (LiDAR) dataset and
Landsat spectral reflectance scenes to conduct these analyses.

Materials and methods

Pre-processing data

This study was conducted on the Pole Creek Fire, which ignited
on 9 September 2012 in the Deschutes National Forest along the

Eastern Cascades Mountains of central Oregon. This fire was
unique in that pre- and post-fire LiDAR data were available
to objectively measure changes in canopy cover. The MIRBI,

dMIRBI, NBR, dNBR and RdNBR were calculated from
pre-fire Landsat Thematic Mapper Plus (TMþ) and post-fire
Landsat Operational Land Imager (OLI) scenes acquired on 23

July 2011 and 10 June 2013 respectively. These scenes were
chosen to minimise cloud cover, snow and differences in
phenology and sun-angle, and were transformed to top-of-

atmosphere reflectance following standard methods (Chander
and Markham 2003) and atmospherically corrected to at-
surface-reflectance using the Cos(t) model (Mahiny and Turner
2007) and Dark Object Subtraction (Chavez 1996). Small

portions of the study area were omitted where snow or open-
water bodies interfered with change-detection analysis. Spectral
indices were calculated based on the literature (Table 1).

The LiDAR data were acquired in October 2009 and October
2013 by Watershed Sciences Inc. (Corvallis, OR, USA) with
a Leica ALS50 sensor (Leica Geosystems, St Gallen,

Switzerland) at 900 m above ground level, a 288 field of view,
and at least 50% side-lap, at a density of 8 pulses m�2. The data
were normalised for height, binned to match the Landsat pixels,

and clipped to above 0.15 m to ensure measurement of vegeta-
tion. Pre- and post-fire canopy cover was derived from the
number of LiDAR returns in a voxel higher than 1.8 m, the
threshold for understorey used by Brown et al. (1982). Percent-

age relative change in canopy cover (RdCC) was calculated as
the difference between pre- and post-fire canopy cover divided
by pre-fire canopy cover times 100. Further details of the

LiDAR processing are described in McCarley et al. (2017b),
and the data are available publicly through the Forest Service
Research Data Archive (McCarley et al. 2018).

Analysis

Following the procedures of Trigg and Flasse (2001) and
Roy et al. (2006), Landsat OLI bands that comprise MIRBI

(shortwave infrared (SWIR) 1 (1.55–1.75 mm) and SWIR 2
(2.08–2.35 mm)) and NBR (near infrared (NIR; 0.76–0.90 mm)
and SWIR 2) were plotted in bi-spectral space and overlaid with
isolines representing the index values. Using LiDAR-estimated

relative change in canopy cover to define fire effects, three
severity stratifications were classified: unburned areas, areas in
the lowest 10th percentile of relative canopy change, and areas

in the highest 10th percentile of relative canopy cover change.
One hundred randomly sampled points were collected from
each stratification, allowing visual assessment of optimality,

where changes between the three stratifications perpendicular to
the isolines should be due to increasing severity and changes
parallel to the isolines should be due to perturbing factors

(Roy et al. 2006).
Spectral separability was assessed for MIRBI, dMIRBI,

NBR, dNBR and RdNBR using pixels outside the fire perimeter
and relative change in canopy cover binned to 10th percentile

increments to ensure comparable severity classes. For this
analysis, all non-masked pixels within the LiDAR acquisition
area were used. Following similar studies (Kaufman and Remer

1994; Pereira 1999; Smith et al. 2007), separability values were
calculated between unburned pixels and each severity class for
all the spectral indices using Eqn 1:

M ¼ ðmu � mbÞ=ðsux þ sbxÞ ð1Þ

whereM is the separability statistic, mu and sux are the mean and

standard deviation of the unburned pixels, and mb and sbx are the
mean and standard deviation for burned pixels of severity group
x. The M-statistic can be calculated for individual bands or

Table 1. Common spectral indices used to assess severity and area burned

Abbreviations: MIRBI, Mid-Infrared Bi-spectral Index; dMIRBI, differenced MIRBI; NBR, Normalised Burn Ratio; dNBR,

delta NBR; RdNBR, relativised dNBR; r is at-surface reflectance for one of the given Landsat bands: near-infrared (NIR),

shortwave infrared 1 (SWIR1), or shortwave infrared 2 (SWIR2). The offset is the mean index value for homogeneous

unchanged areas that accounts for differences in phenology and moisture between pre- and post-fire images

Burn severity or burned area index Reference(s)

MIRBI¼ 10rSWIR1 � 9.8rSWIR2þ 2.0 Trigg and Flasse (2001), Smith et al. (2007)

dMIRBI¼ (MIRBIprefire – MIRBIpostfire) – MIRBIoffset McCarley et al. (2017b)

NBR¼ ((rNIR – rSWIR2)/(rNIRþ rSWIR2))� 1000 Key and Benson (2006)

dNBR¼ (NBRprefire – NBRpostfire) – dNBRoffset Key and Benson (2006)

RdNBR¼ dNBR/(|NBRpre|/1000)
0.5 Miller and Thode (2007)
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values of spectral indices. Comparisons with M-statistic values
.1 are considered separable, values between 0.75 and 1 are

moderately separable, and M-statistic values ,0.75 are not
separable. The ideal index would be separable (i.e. M-statistic
.1) at all levels of severity, and the separability between

unburned and burned pixels should increase with increasing

severity to distinguish among increasing levels of canopy-based

fire effects.

Results

Randomly sampled MIRBI and NBR values were plotted in bi-
spectral space for unburned pixels and pixels in the top 10th and
bottom 10th percentiles of severity (Fig. 1). The three stratifi-

cations for MIRBI bands fell into lines parallel with continuous
MIRBI index values, suggesting that environmental factors (i.e.
soil colour) caused spectral displacement along isolines.

Meanwhile, displacement caused by burning was largely per-
pendicular to isolines, although there was some confusion
between the unburned and low severity (bottom 10th percentile
of severity) where reflectance in SWIR 1 (1.55–1.75 mm) and

SWIR 2 (2.08–2.35 mm) was low. For NBR, the top 10th per-
centile and bottom 10th percentile of severity were well dif-
ferentiated, with the higher-severity pixels tending to fall into a

line parallel with NBR isolines. However, compared with
MIRBI, greater confusion was observed for lower severity and
unburned, which varied perpendicular to NBR isolines, sug-

gesting environmental factors were affecting spectral change in
the same direction as changes caused by burning.

Spectral separability was assessed for MIRBI, dMIRBI,

NBR, dNBR and RdNBR between unburned pixels in the
LiDAR acquisition area and relative change in canopy cover
(RdCC) within the fire perimeter binned to 10th percentile
increments (Fig. 2). Using a threshold of 1, no index was

separable at severities below the 40th percentile (17% RdCC),
although MIRBI and dMIRBI were nearly always moderately
separable (M-statistic .0.75). The MIRBI index was best at

distinguishing burned and unburned, being separable above the
40th percentile, whereas dMIRBI, NBR and dNBR were all
separable above the 50th percentile (25% RdCC). RdNBR was
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Fig. 1. Percentage reflectance in the Landsat bands (shortwave infrared 1 (SWIR1), shortwave infrared 2 (SWIR2), and near-infrared (NIR))

used to calculate (a) the Mid-Infrared Bi-spectral Index (MIRBI); and (b) the Normalised Burn Ratio (NBR) for randomly sampled points in

unburned areas outside the Pole Creek fire perimeter (black crosses) and areas classified in the bottom 10th (yellow triangles) and top 10th (red

circles) percentiles of relative canopy cover change.
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only separable from unburned pixels between the 70th and 80th
percentiles (46–58% RdCC). Consistent with distinguishing
levels of severity, most indices generally exhibited increased

separability as severity increased. However, dNBR and RdNBR
separability began to drop at the highest severity levels, whereas
MIRBI, dMIRBI and NBR separability increased.

Discussion

Spectral index optimality

An optimal spectral index for measuring fire effects is sensitive
to changes caused by burning and insensitive to environmental
factors such as soil colour and atmospheric effects (Verstraete
and Pinty 1996). In the present study, changes in severity

between unburned, lower 10th percentile and upper 10th
percentile of relative change in canopy cover yielded increasing
MIRBI index values, whereas variation within classes (i.e.

environmental factors) was distributed along isolines and thus
had minimal effect on index value. This suggests an optimal
index.

The spectral displacement caused by burning observed for
NBR appeared more optimal than what was described using
field measurements in Roy et al. (2006), perhaps as a result of
the spectral aggregation at the Landsat scale, or differences in

NBR performance between conifer and rangeland ecosystems.
However, the confusion between unburned and low-severity
(lower 10th percentile) pixels and the variation perpendicular to

isolines within severity classes were readily apparent. This
variation suggests that NBR is a less optimal index, a result that
concurs with Roy et al. (2006), as environmental factors within a

defined class should not affect the index value. In practice, this
would result in a wide range of NBR values corresponding to
small differences in fire effects, potentially misleading the

interpretation of such values. Certain applications, such as
the discernment of unburned islands and accurate delineation
of fire perimeters, have significant implications for characteris-
ing post-fire ecosystem heterogeneity and resilience (Kolden

and Weisberg 2007; Kolden et al. 2012; Sparks et al. 2015;
Meddens et al. 2016). From what was observed in the present
study, the utilisation of an optimal index such as MIRBI may be

more suited to these efforts than NBR.

Separability of fire effects

Overall, MIRBI was the best index for distinguishing between
burned and unburned pixels across all percentile levels and is

consistent with the bi-spectral space plots (Fig. 1). Lower sep-
arability that was observed between unburned and low-severity
fire effects is consistent with Smith et al. (2007), who noted that
although MIRBI was developed using a field spectroradiometer

(Trigg and Flasse 2001), satellite sensor pixels include amixture
of burned and unburned surfaces that reduce separability.
Additionally, issues with discerning low-severity fire effects

from satellite imagery in conifer forests are well documented

(a) (b) (c) (d)

Fig. 3. Spatial comparison of relative change in canopy cover (RdCC) (a); differencedMid-Infrared Bi-spectral Index (dMIRBI) (b); delta Normalised

Burn Ratio (dNBR) (c); and relative dNBR (RdNBR) (d). The dMIRBI compares most favourably with RdCC in the inset area (bottom) where unburned

islands were present, as well as the north-western portion of the fire (highlighted in orange) where there were substantial pre-fire mountain pine beetle

impacts (McCarley et al. 2017a).
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(Hudak et al. 2007; Wulder et al. 2009; Kolden et al. 2012;
McCarley et al. 2017b), and are likely to have produced
additional confusion given the differences between spectral and

structural change.
For most indices tested, separability increased with relative

change in canopy cover, demonstrating the ability to distinguish

between increasing levels of canopy-based fire effects.
On visual comparison of relative change in canopy cover vs
the three differenced indices tested (Fig. 3), dMIRBI appears to

most accurately match fire effects (specifically, change in
canopy cover), especially in areas that are highly heterogeneous
in terms of severity. The contrast observed here is consistent
with the large difference in separability across levels of severity

compared with dNBR and RdNBR (Fig. 2). The dMIRBI also
appeared to more accurately represent relative change in canopy
cover in areas where pre-fire mountain pine beetle (MPB)

outbreak was known to have occurred (McCarley et al.

2017a). In this respect, dNBR performed poorly, although
McCarley et al. (2017b) observed much better correlation

between this index and absolute change in canopy cover. The
RdNBR identified relative change in MPB-affected areas, but
not as clearly as dMIRBI. Additionally, RdNBRwas notable for

exhibiting the least sensitivity across fire-induced changes
as well as not being separable (M-statistic ,1) from unburned
pixels for almost all classes. This is consistent with poor
relationships that were previously observed for this index

in conifer forests (Hudak et al. 2007; McCarley et al. 2017b).
As the present research note evaluated only one fire, it is

difficult to draw the conclusion that the patterns observed

here would be regionally or nationally consistent. However,
this highlights the broader need to understand how spectral
indices may perform differently across ecosystems when

calibrated to specific biophysical measures of change and
provides the framework for more research. The Rapid
Assessment of Vegetation Condition after Wildfire (RAVG;
https://www.fs.fed.us/postfirevegcondition/, accessed 27 April

2018) is developed using RdNBR, although the equation was
derived in California using modelled changes in structure
(Miller et al. 2009; Miller and Quayle 2015). Results of the

current study suggest that RdNBR was not the most appropriate
index formeasuring relative change in canopy cover for the Pole
Creek Fire, raising reasonable doubt about the widespread

applicability of national products such as RAVG that rely solely
on spectral change.

Conclusions

Recent efforts in the scientific community have pushed for more
meaningful measures of fire effects beyond spectral change.

One such measure uses multitemporal LiDAR (e.g. Kane et al.
2013, McCarley et al. 2017b) to quantify structural changes
from fire. However, the cost and availability of LiDAR are

currently prohibitive for widespread application. Another pro-
posed approach is to use the measurement of fire radiative
energy as a predictor of changes in net primary productivity

(Smith et al. 2016, 2017; Sparks et al. 2016), but this is restricted
to either acquisition during the fire event or modelling. There-
fore, MIRBI and dMIRBI, when calibrated to specific fire
effects, may still offer a viablemoderate-scale, easily acquirable

method of predicting fire effects. It is likely that there is no
‘one-size-fits-all’ burn severity spectral index and that a suite of
data will be required to fine-tune for factors such as ecosystem

differences and the fire effect of interest for a given study.
Equally, defining burn severity and fire effects based on specific
biometrics remains critical to reducing ambiguity in the

processes measured (Lentile et al. 2006; Kolden et al. 2015;
Smith et al. 2016). Future work defining landscape-scale fire
effects would benefit from utilising a wide range of techniques,

rather than one-dimensional off-the-shelf products such as
MTBS, in order to more accurately quantify and understand the
post-fire landscape.
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