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Abstract 

Measuring fire effects using remote sensing is critical to facilitating an ecological 

understanding of wildfire at the landscape scale, but questions remain regarding the relationship 

between spectral changes caused by fire, forest biometrics, and pre-fire agents of change. This thesis 

addresses these questions by (1) comparing structural forest changes estimated from Light Detection 

and Ranging (LiDAR) with spectral changes captured by Landsat, and (2) exploring the effects of an 

antecedent mountain pine beetle (Dendroctonus ponderosae; MPB) outbreak and forest treatments on 

subsequent fire effects. The strongest correlations were observed between LiDAR-estimated change 

in canopy cover (dCC) and spectral indices incorporating the shortwave infrared band. Compared to 

areas experiencing no pre-fire agent of change, dCC was higher in pre-fire MPB and lower in pre-fire 

treatments. These results demonstrate the utility of multi-temporal LiDAR to measure fire effects and 

the importance of antecedent MPB and forest treatments on subsequent wildfire severity.  
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Thesis Introduction 

Mapping wildfire effects is critically important. Following a wildfire, managers and scientists 

seek to understand rehabilitation needs (Hessburg et al., 2015; Turner, Hargrove, Gardner, & Romme, 

1994) and predict trends in ecological recovery (Cansler & Mckenzie, 2014; Eidenshink et al., 2007; 

Miller, Safford, Crimmins, & Thode, 2009). Secondary fire effects, such as flooding and erosion, 

provide an urgent need to identify at-risk areas using these maps (Moody, Martin, Haire, & Kinner, 

2008; Robichaud, Lewis, Brown, & Ashmun, 2009). And at the broader scale, fire effects mapping is 

used to understand how climate change is affecting forest carbon cycling (Conard et al., 2002; Goetz, 

Mack, Gurney, Randerson, & Houghton, 2007; Hicke et al., 2003; Kashian, Romme, Tinker, Turner, 

& Ryan, 2006; Romme et al., 2011). All of these tasks are vitally important and likely to become 

more so as climatic shifts toward larger, more extreme wildfires occur (Barbero, Abatzoglou, Larkin, 

Kolden, & Stocks, 2015; Littell, McKenzie, Peterson, & Westerling, 2009; Westerling, Hidalgo, 

Cayan, & Swetnam, 2006). 

Remote sensing is the primary tool allowing managers and scientists to understand fire effects 

at the landscape scale (Lentile et al., 2006). Early attempts to classify fire effects using passive 

sensors (i.e., Landsat) demonstrated that Landsat Thematic Mapper (TM) band 7 (shortwave infrared: 

2.08-2.35µm) is particularly sensitive to lack of vegetation and/or moisture associated with a fire 

(Jakubauskas, Lulla, & Mausel, 1990; White, Ryan, Key, & Running, 1996). This led to the 

development of the Normalized Burn Ratio (NBR; Lopez-Garcia & Caselles, 1991), which was used 

for burned area delineation, and delta NBR (dNBR; Key & Benson, 2006) and Relative delta NBR 

(RdNBR; Miller & Thode, 2007) to measure variations in fire effects. These indices have become 

ubiquitous in fire ecology research (e.g., Eidenshink et al., 2007; French et al., 2008; Lentile et al., 

2006; Zhu, Key, Ohlen, & Benson, 2006). However, there are widespread concerns about the ability 

for these indices to accurately differentiate burned and unburned pixels (Kolden, Lutz, Key, Kane, & 
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van Wagtendonk, 2012; Sparks et al., 2015) and delineate severity classes without adequate ground 

observations (Kolden, Smith, & Abatzoglou, 2015). Furthermore, without specific correlation to any 

biometric measure of severity, many researchers are finding spectral indices alone to be suboptimal 

metrics (Kolden et al., 2015; Morgan et al., 2014; Roy, Boschetti, & Smith, 2013; Roy, Boschetti, & 

Trigg, 2006; Smith et al., 2016). 

 Forest structural attributes derived from Light Detection and Ranging (LiDAR) data may 

provide a viable alternative to spectral indices, by providing an estimate of changes in vegetation 

structure associated with a wildfire (Smith et al., 2014). LiDAR is an active remote sensing method 

that is growing in prominence among natural resource managers and scientists (Hudak, Evans, & 

Smith, 2009). Sensors are now ground-, air-, and space-based, although airborne LiDAR is 

particularly well suited to landscape scale studies in forested ecosystems. Measurements are made by 

calculating the angle and distance between the sensor and target using a global positioning system and 

the elapsed time for the light to make the round-trip from the sensor to the target and back. LiDAR 

can estimate structural attributes, such as height, cover, height distribution of outer canopy surfaces, 

vertical distribution of canopy material, volume, biomass, and gap size (Hudak et al., 2009; Kane et 

al., 2013; Lefsky, Cohen, Parker, & Harding, 2002). LiDAR has also been successfully used to map 

bark beetle effects (Bater, Wulder, White, & Coops, 2010; Bright, Hicke, & Hudak, 2012) and fuel 

loads (Andersen, McGaughey, & Reutebuch, 2005; Seielstad & Queen, 2003). While greater attention 

has been paid to characterizing fire fuel structure, only a few studies have used LiDAR to quantify 

post-fire effects (Bishop, Dietterick, White, & Mastin, 2014; Kane et al., 2013, 2014; Reddy et al., 

2015; Wang & Glenn, 2009; Wulder et al., 2009) and even fewer have used pre- and post-fire LiDAR 

acquisitions (Bishop et al., 2014; Reddy et al., 2015; Wang & Glenn, 2009; Wulder et al., 2009). 

 Repeat acquisition of LiDAR in 2009 and 2013, spatially coincident with the 2012 Pole 

Creek fire in central Oregon along the eastern Cascades, provided a unique opportunity to 
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demonstrate the utility of multi-temporal LiDAR to estimate fire effects. This thesis utilizes these data 

to explore the relationship between multi-temporal LiDAR and conventional spectral remote sensing 

of fire effects. It also exhibits the application of multi-temporal LiDAR to provide novel insights on 

the effect pre-fire agents of change have on subsequent fire effects. Each of the chapters in this paper 

corresponds with an objective. 

The goal of chapter one was to explore the relationships of spectral indices calculated from 

Landsat imagery and changes in forest structure estimated from multi-temporal LiDAR. A secondary 

theme of this chapter was the use of simultaneous autoregression, a spatially weighted regression 

model, to improve performance by providing a proxy for other variables (i.e., geomorphic or climatic 

process) not in the model (Kissling & Carl, 2007; Prichard & Kennedy, 2014; Wimberly, Cochrane, 

Baer, & Pabst, 2009). This study included 21 spectral indices and 24 LiDAR metrics as candidate 

variables, eliminating poorly correlated combinations, resulting in 63 viable models to evaluate. Both 

ordinary least squares regression and simultaneous autoregression were applied to these pairs, 

although model evaluation using Akaike’s Information Criterion (AIC; Akaike, 1974) showed the 

spatial models were superior in each case. LiDAR-estimated change in canopy cover (dCC) and a 

multi-temporal ratio of Landsat’s second shortwave infrared and near infrared bands (d74) had the 

highest correlation (psedo-r
2
 = 0.86), followed by dNBR and dCC (psedo-r

2
 = 0.85). Correlation with 

LiDAR metrics closer to the ground was not well detected by spectral indices. Like past studies, it 

was observed that Landsat band 7 is most sensitive to fire effects (Key & Benson, 2006; Miller & 

Yool, 2002; van Wagtendonk, Root, & Key, 2004; White et al., 1996); however, correlation with a 

substantive severity metric (i.e., dCC) was also demonstrated. This work sets the stage for future 

opportunities to calibrate spectral indices to structural measures of change at larger scales. 

 The goal of chapter two was to explore the impact of pre-fire agents of change, in this case 

mountain pine beetle (Dendroctonus ponderosae; MPB) and timber harvest, on subsequent fire-
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caused change in canopy cover, estimated by multi-temporal LiDAR (dCC). This chapter used MPB 

estimates of mortality occurring 6-12 years prior to the fire and locations for timber harvest and 

hazardous fuel reduction treatments conducted by the Deschutes National Forest between 1971 and 

2009. Areas being affected by all possible combinations of forest agents were identified and 

evaluated, including: (1) MPB followed by wildfire (MPB/Fire), (2) harvest followed by wildfire 

(HARV/Fire), (3) a combination of forest harvest and MPB followed by fire (HARV/MPB/Fire), (4) 

wildfire having not been proceeded by either MPB or harvest (Fire-only), (5) MPB, (6) HARV, (7) 

HARV/MPB, and (8) no pre-fire agent (No Agent/No Fire). Pre-fire MPB intensity, harvest treatment 

type, and harvest treatment age were also examined. Results indicate that MPB/Fire areas had higher 

average dCC than Fire-only, and that dCC increased with pre-fire MPB-mortality. Timber harvest, on 

the other hand, appeared to reduce dCC compared to Fire-only. A relationship was observed with 

dCC and treatment age, with the most recent treatments experiencing the lowest dCC. Treatment type 

did not appear to be as important. This method of measuring fire effects across the landscape is a 

noteworthy improvement over studies limited to post-fire data only, as well as those using dNBR or 

RdNBR without any kind of biometric validation. The findings regarding harvest treatment areas 

generally agree with previous research (e.g., Moghaddas & Craggs, 2007; Prichard, Peterson, & 

Jacobson, 2010; Ritchie, Skinner, & Hamilton, 2007; Safford, Schmidt, & Carlson, 2009; Safford, 

Stevens, Merriam, Meyer, & Latimer, 2012; Wimberly et al., 2009). However, there is still significant 

uncertainty regarding the impact of MPB (Hicke, Johnson, Hayes, & Preisler, 2012) and the finding 

of increased burn severity contradicts recent studies conducted in the same area (Agne, Woolley, & 

Fitzgerald, 2016; Meigs, Zald, Campbell, Keeton, & Kennedy, 2016). While additional research is 

needed on the topic of pre-fire agents of change, the use of multi-temporal LiDAR demonstrates 

considerable promise in the field of fire ecology. 
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Chapter 1: Multi-temporal LiDAR and Landsat Quantification of Fire Induced 

Changes to Forest Structure 

T. Ryan McCarley, Crystal A. Kolden, Nicole M. Vaillant, Andrew T. Hudak, Alistair M.S. Smith, 

Brian M. Wing, Bryce Kellogg, Jason Kreitler 

In review for Remote Sensing of Environment 

 

Abstract 

Measuring post-fire effects using remote sensing is critical to an ecological understanding of 

wildfire at the landscape scale. Predominantly this is accomplished with multi-spectral reflectance 

data, which provide frequent, synoptic observations of spectral changes in the top-most Earth surface 

(often forest canopy), and ground-based field sample plots, which are usually limited to post-fire 

observations. This study quantifies wildfire burn severity by comparing forest changes in biomass and 

structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions with 

spectral changes captured by the Landsat Thematic Mapper (TM) and the Operational Land Imager 

(OLI) sensors. Data acquired before and after the 2012 Pole Creek Fire in central Oregon along the 

eastern Cascade Mountains were utilized to assess the potential for spectral indices to predict forest 

structural changes. The strongest correlations were observed using a LiDAR-derived estimate of 

change in canopy cover. A simple ratio of shortwave infrared and near infrared light (d74), the delta 

Normalized Burn Ratio (dNBR), and the delta Normalized Vegetation Index (dNDVI) were the top 

three predictor indices (psedo-r
2
 > 0.84, p < 0.01). For the most part, correlation between percentage 

of LiDAR returns in forest strata and spectral indices increased with strata height. Structural 

measurements made closer to the ground and statistical measures of the point cloud such as mean, 

standard deviation, and skewness were not well correlated. Additionally, the results indicated that the 

presence of pre-fire mountain pine beetle mortality negatively affected the performance of the 
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Relative delta Normalized Burn Ratio (RdNBR) by producing significant outliers at the edge of the 

disturbance where pre-fire NBR was near zero. This study demonstrates that spectral indices such as 

d74, dNBR, and dNDVI are most sensitive to wildfire-caused structural changes akin to reduction in 

canopy cover and less sensitive to fire effects near the surface in a forested ecosystem. These results 

establish the utility of spectral methods to predict changes in canopy structure under certain fire 

regimes, as multi-temporal LiDAR is not available everywhere. 

Keywords: wildfire, eastern Cascades, dNBR, RdNBR, canopy cover, mountain pine beetle 

 

1. Introduction 

Remote sensing imagery plays a critical role in allowing managers and scientists to assess fire 

effects across landscapes (Lentile et al., 2006). Accurate detection of wildfire severity is required to 

evaluate potential ecological rehabilitation needs (Hessburg et al., 2015; Turner et al., 1994), mitigate 

secondary fire effects (e.g., flooding and erosion) (Moody et al., 2008; Robichaud et al., 2009), 

monitor anomalies and trends in ecological recovery (Cansler & Mckenzie, 2014; Eidenshink et al., 

2007; Miller, Safford, et al., 2009), and quantify carbon balance (Meigs, Donato, Campbell, Martin, 

& Law, 2009; Randerson, Chen, van der Werf, Rogers, & Morton, 2012). In light of increasing 

frequency and size of wildfires under climate change (Barbero et al., 2015; Westerling et al., 2006) 

and the inherent inter-annual variability of fire seasons (Moritz et al., 2012), the ability to accurately 

quantify long-term carbon stocks is necessary for understanding biosphere-atmosphere feedbacks (Li, 

Bond-Lamberty, & Levis, 2014). The long-term impacts of fire severity on forest carbon stocks and 

processes have been characterized by only a few studies including those focused on recovery in high 

latitude ecosystems (Conard et al., 2002; Goetz et al., 2007; Hicke et al., 2003) and recovery 

following the Yellowstone 1988 fires (Kashian et al., 2006; Romme et al., 2011). While considerable 

advances have been made in relating observed changes associated with fire effects to remote sensing 
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data (Disney et al., 2011; Lentile et al., 2006; Smith et al., 2016), there are still knowledge gaps and 

several known sources of uncertainty that can lead to extensive errors when applied to regional 

assessments (Kolden et al., 2015; Roy et al., 2006; Smith et al., 2016) 

Most notably, considerable disconnects exist between the severity maps, which are usually 

produced from passive reflectance based imagery, and forest structural differences that are readily 

related to changes in aboveground carbon. Often the products developed through the application of 

spectral indices applied to data is myopically described as “burn severity”, a frequently poorly 

defined term (Keeley, 2009; Lentile et al., 2006). Furthermore, these vaguely defined spectral index-

based products are primarily linked to subjective and qualitative observations of likely surface 

changes (Lentile et al., 2006) that in many cases are inferred without pre-fire data and are often not 

directly measurable by satellite sensors (Lentile et al., 2009; Roy et al., 2006). Without the 

development of physical linkages between spectral data and quantitative measures of forest structure, 

errors in carbon quantification will extrapolate through models, propagating errors (Kolden et al., 

2015). A limited number of studies have sought to relate radiometric datasets to mechanistic changes 

in vegetation following fires (Disney et al., 2011; Smith et al., 2016). Structural datasets such as those 

derived from LiDAR data have considerable promise to be directly related to changes in vegetation 

structure (Smith et al., 2014), but such research is limited (Bishop et al., 2014; Wang & Glenn, 2009; 

Wulder et al., 2009).  

Severity delineation from passive sensors is accomplished through the analysis of individual 

bands (White et al., 1996) or indices that incorporate properties of multiple bands (Lentile et al., 

2006; Smith et al., 2007). The most frequently used are the Normalized Burn Ratio (NBR; Lopez-

Garcia & Caselles, 1991), delta NBR (dNBR; Key & Benson, 2006), and Relative delta NBR 

(RdNBR; Miller & Thode, 2007).  The dNBR and RdNBR indices are calculated by the Monitoring 

Trends in Burn Severity (MTBS) project (Eidenshink et al., 2007); these data have subsequently been 
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used to model pyrogenic emissions (Meigs, Turner, Ritts, Yang, & Law, 2011). The most commonly 

used field measure of burn severity for calibration of these spectral indices is the Composite Burn 

Index (CBI) (Key & Benson, 2006), although several limitations to this protocol are apparent. First, 

because measurements are taken by ocular estimation they can be very subjective (Lentile et al., 

2009; Morgan et al., 2014; Zhu et al., 2006). Second, the CBI value is a comprehensive severity score 

that includes all vertical strata including the subsurface, which correlates poorly to spectral 

reflectance of the top-most surface (Hudak et al., 2007). Third, because it is a comprehensive score, 

CBI values are unitless and not directly representative of the ecological metrics that are most relevant 

to efforts to model and monitor fire effects, such as tree mortality, canopy cover, or carbon 

consumption. Finally, CBI protocol includes subjective reconstructive estimation of pre-fire 

conditions in the post-fire environment (i.e., no pre-fire data are usually collected), yielding data of 

questionable accuracy that are extremely difficult, if not impossible, to verify (Lentile et al., 2006; 

Morgan et al., 2014; Smith et al., 2016; Zhu et al., 2006). 

The difficulty in quantifying fire-induced change without pre-fire measurements extends 

beyond the CBI protocol. There have been a few rare studies where fire burned through permanent 

monitoring plots that were subsequently assessed (Bishop et al., 2014; Cocke, Fulé, & Crouse, 2005; 

Wimberly & Reilly, 2007); however, these studies have relied on small numbers of burned plots to 

represent change over a large area. Long-term monitoring plots associated with the Forest Inventory 

and Analysis (FIA) project (Gillespie, 1999) have burned with greater frequency in recent years, but 

the set return intervals of FIA mean that several years may pass between the fire event and the post-

fire re-visit, reducing the visibility and magnitude of those effects when data collection does occur 

(Whittier & Gray, 2016). The lack of pre-fire observations for the majority of field data utilized to 

calibrate burn severity spectral indices leads to inconsistency between the remote sensing measures, 

which quantify change between pre- and post-fire acquisitions, and field calibration measures, which 
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are limited to post-fire observations. Measuring only the post-fire environment cannot adequately 

represent the effect of fire, because it fails to capture the magnitude of change, whether the observed 

changes are in fact directly caused by the fire, or if another disturbance event is also contributing 

(Roy et al., 2013; Smith et al., 2016; Smith, Eitel, & Hudak, 2010).  

The increasing acquisition frequency of airborne Light Detection and Ranging (LiDAR) data 

over relatively large areas offers a potential alternative mode of measuring fire-induced ecological 

change and calibrating reflectance-based spectral indices to improve the models that use index-based 

products. Discrete-return LiDAR collected at high spatial resolution can accurately measure forest 

height, percent canopy cover, and provide three-dimensional canopy height and density metrics 

describing the vertical distribution of canopy material, aerodynamic roughness (Hudak et al., 2009; 

Lefsky et al., 2002), and gap size (Hudak et al., 2009; Kane et al., 2013). Analyzed in concert with 

field data, LiDAR returns can also be used to predict forest structure attributes such as basal area, 

volume, biomass, and leaf area (Hudak et al., 2009; Lefsky et al., 2002). LiDAR has been 

successfully used to quantify the effects of insect outbreaks in forests (Bater et al., 2010; Bright et al., 

2012), pre-fire fuel loading (Andersen et al., 2005; Seielstad & Queen, 2003), and structural 

measurements of the post-fire environment  (Bishop et al., 2014; Kane et al., 2013, 2014; Kwak et al., 

2010; Wulder et al., 2009). Acquisitions of high-resolution, comparable pre- and post-fire LiDAR 

data that provide measure of fire-induced vegetation change have been limited (Bishop et al., 2014; 

Wang & Glenn, 2009; Wulder et al., 2009). However, multi-temporal LiDAR is not a novel concept 

and has been widely applied to quantify other ecosystem properties such as snow volume (Tinkham et 

al., 2014), forest growth and harvest disturbance (Hudak et al., 2012), and change in biomass 

resulting from a Gypsum moth (Lymantria dispar) outbreak (Skowronski, Clark, Gallagher, Birdsey, 

& Hom, 2014), among other applications.  
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Only two studies to-date have been able to spatially match pre- and post-fire LiDAR 

acquisitions in order to objectively quantify fire effects on forest structure (Bishop et al., 2014; 

Wulder et al., 2009), with additional studies by Wang & Glenn (2009) focused on shrubs in steppe 

ecosystems and Reddy et al. (2015) in peatlands. Neither of the prior studies in forest ecosystems 

explicitly linked LiDAR-derived forest structure metrics to the spectral indices that are most 

commonly used to assess forest burn severity across an entire fire; Bishop et al. (2014) assessed the 

Normalized Differenced Vegetation Index (NDVI) on a small portion of a wildfire, while Wulder et 

al. (2009) analyzed only a limited set of returns from a single LiDAR transect. In order to model 

metrics of fire-induced forest change from unitless spectral indices that are widely-utilized to 

characterize burn severity and model emissions (e.g., dNBR and RdNBR), there is a critical need for 

additional studies to be undertaken where pre- and post-fire LiDAR overlap spatially.  

One such opportunity arose following the 2012 Pole Creek Fire in Central Oregon, USA, 

where post-fire LiDAR was acquired spatially coincident with a pre-fire acquisition across an entire 

fire, featuring a gradient of forest types. The primary goal of this study was to assess the accuracy of 

spectral indices calculated from Landsat imagery in predicting changes in forest structure calculated 

from pre- and post-fire LiDAR. A secondary objective was to assess the utility of spatial 

autocorrelation for improving model predictive power. While some studies have sought to improve 

model predictions of burn severity through inclusion of environmental data at mismatched spatial 

scales (e.g., Birch et al., 2015; Dillon et al., 2011), simultaneous autoregressive modeling, a form of 

spatially weighted regression, has been shown to improve on non-spatially explicit regression models 

(Cressie, 1993; Haining, 1990; Lewis et al., 2011). Simultaneous autoregression incorporates the 

spatial autocorrelation in burn pattern, providing a proxy for other influential variables (i.e., 

geomorphic or climatic process) not included in the model (Kissling & Carl, 2007; Prichard & 
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Kennedy, 2014; Wimberly et al., 2009). These previous findings suggest using a spatially explicit 

model would improve the relationship between LiDAR metrics and spectral indices.  

 

2. Material and Methods 

2.1. Study Area 

 The study was carried out on the Pole Creek Fire, located along the eastern Cascade 

Mountains in the Deschutes National Forest, approximately 30 kilometers west north-west of Bend, 

Oregon (Fig. 1.1). Ignited by lightning on September 9
th
, 2012, the fire grew to 10,800 hectares 

before containment in mid-October. The fire burned across a large elevational gradient (1,200 to 

2,100 meters) and wide variety of forest types, with dominant tree species including ponderosa pine 

(Pinus ponderosa), lodgepole pine (Pinus contorta), mountain hemlock (Tsuga mertensiana), and 

grand/white fir hybrid (Abies gradis/Concolor). The mean July minimum and maximum temperatures 

are 6.3 °C and 23.1 °C, and the mean January minimum and maximum temperatures are -6.0 °C and 

2.1 °C. In an average year, the area receives 1095 millimeters of precipitation, mostly as snow 

(PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 6 September 

2015). Mountain pine beetle (Dendroctonus ponderosae) caused significant mortality throughout the 

P. contorta stands 6-12 years before the fire (McCarley, Kolden, Vaillant, Hudak, and Smith, Chapter 

2, this thesis). 
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Figure 1.1: Location of Pole Creek Fire (white outline) in central Oregon and the overlap of viable 

LiDAR and Landsat imagery (orange outline with crosshatch). Data overlaid on 2014 National 

Agricultural Imagery Program (NAIP) imagery.  

 

 

2.2. Data Pre-processing 

Pre- and post-fire USGS Level 1 terrain-corrected (L1T) Landsat TM and OLI scenes were 

selected (Table 1.1) on the basis of phenological comparability, nonexistence of snow or cloud cover 

over the burn area, and maximizing the number of pixels for analysis. Based on the criteria all pre-fire 

scenes from 2012 were excluded because the scan line error on Landsat ETM+ reduced the number of 

useable pixels considerably. Remaining candidate scenes were evaluated for best match based on 

plant phenology and sun angle following best practices of Key (2006). All of the scene combinations 

had a few patches of snow at higher elevations, creating interference with change analysis. Therefore, 
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pixels containing snow were excluded once the best phenological pair was determined. For similar 

reasons open water bodies with seasonally variable levels were also excluded, resulting in the 

omission of 1.6% of the pixels within the fire perimeter. In order to prepare and standardize Landsat 

scenes for multi-date comparison, band brightness values were transformed into reflectance (Chander 

& Markham, 2003), then atmospherically corrected to at-surface-reflectance using the Cos(t) model 

and Dark Object Subtraction (Chavez, 1996).  

Discrete, multi-return LiDAR data were acquired pre- and post-fire by Watershed Sciences, 

Inc. (Corvallis, OR) (Table 1.1) at a survey altitude of 900 meters above ground level with a 28° field 

of view (± 14° from nadir) and at least 50% side-lap. In each case, the vendor post-processed the 

LiDAR data in order to ensure geometric accuracy and develop a 1-meter digital terrain model. 

Following delivery, pre- and post-fire data were height normalized by subtracting the terrain model 

from the LiDAR point cloud using the USDA Forest Service’s FUSION software package 

(http://forsys.cfr.washington.edu/fusion.html). Pre-fire LiDAR data were re-projected using LAStools 

(Isenburg, 2013) from state plane into UTM to match the post-fire LiDAR and Landsat data. 
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Table 1.1: Data Acquisition Parameters 

 Date Sensor Type Resolution 

Pre- Fire LiDAR October 7-11, 2009 Leica ALS50 Average 8 pulses/m
2
 

Pre- Fire Multi-

spectral Image
a 

July 23, 2011
 

Landsat 5 TM
b 

Bands 1-5 and 7, 30-m 

Band 6 (thermal), 120-m 

Post- Fire Multi-

spectral Image
a 

June 10, 2013
 

Landsat 8 OLI
b 

Bands 1-7 and 9, 30-m 

Bands 10 and 11 (thermal), 100-m 

Band 8 (panchromatic), 15-m 

Post-Fire 

LiDAR 

October 8-11, 2013 Leica ALS50 Average 8 pulses/m
2
 

a
 Scene located at Worldwide Reference System 2: Path 45, Row 29. 

b
 Despite the differences in 

spectral channel and bit size between Landsat 8 and the two previous missions (Landsat 5 and 7), 

there is no discernable difference in spectral signature of burned surfaces (Koutsias & Pleniou, 2015). 

  

 

2.3. Spectral Indices 

Fifteen spectral indices were selected based on their use in other studies that mapped fire 

effects. These, as well as individual Landsat bands converted to at-surface reflectance were used as 

predictor variables for LiDAR-derived structure metrics in the analysis. Indices were calculated per 

equations provided in seminal papers (Table 1.2). Following practices by Key (2006) and Cansler & 

McKenzie (2012), an offset value was applied that accounted for phenological differences between 

the pre- post-fire images. This required identifying a few homogenous-forested areas outside the fire 

perimeter for reference and computing the mean value for each spectral index in those areas. 

Understanding that the reference areas should have a differenced index value of zero, adjustments 

were made to all the pixel values by adding or subtracting the value of the reference mean. 
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Table 1.2: Remotely Sensed Spectral Predictors 

Change Spectral Index Derivation Key Reference 

Δ Landsat Bands (Blue (dB), Green (dG), Red (dR), 

Near Infrared (dNIR), Shortwave Infrared 1 

(dSWIR1), and Shortwave Infrared 2 (dSWIR2)) 

- - 

Δ Normalized Burn Ratio (dNBR) (ρNIR–ρSWIR2) / (ρNIR+ρSWIR2) (Key & Benson, 2006) 

Relative dNBR (RdNBR) dNBR / √(|NBRpre|)/1000 (Miller & Thode, 2007) 

Δ Normalized Differenced Vegetation Index (dNDVI) (ρNIR–ρr) / (ρNIR+ρr) (Rouse, Haas, Deerling, Schell, & 

Harlan, 1974) 

Δ Mid-Infrared Bi-Spectral Index (dMIRBI) 10ρSWIR2–9.8ρSWIR1+2.0 (Trigg & Flasse, 2001) 

Δ Char Soil Index (dCSI) ρNIR / ρSWIR1 (Smith et al., 2007) 

Δ Soil Adjusted Vegetation Index (dSAVI) (ρNIR–ρr)(1+L) / (ρSWIR1) (Huete, 1988) 

Δ Tasseled Cap Brightness (dTCB), Greenness (dTCG), 

and Wetness (dTCW) 

(ρb*ε) + (ρg*ε) + (ρr*ε) + (ρNIR*ε) + 

(ρSWIR1*ε) + (ρSWIR2*ε) 

(Crist, 1985; Kauth & Thomas, 1976) 

Δ The first three Principle Components (dPC1, dPC2, 

dPC3) 

(dB*α) + (dG*α) + (dR*α) + (dNIR*α) + 

(dSWIR1*α) + (dSWIR2*α)
 

(Patterson & Yool, 1998) 

Δ Normalized Differenced Water Index (dNDWI) (ρNIR–ρSWIR1) / (ρNIR+ρSWIR1)
 

(Gao, 1996) 

Δ Band 7/4 Ratio (d74) ρSWIR2 / ρNIR
 

(Kushla & Ripple, 1998) 

Δ Band 7/5 Ratio (d75) ρSWIR2 / ρSWIR1 (Epting, Verbyla, & Sorbel, 2005) 

All Spectral Indices analyzed as the difference from pre- to post-fire; ρ = at-surface reflectance for band ρx, where x is given by the Landsat 

sensor. L=soil constant set to 0.5. ε = coefficients for linear transformation, defined by Crist (1985). α = coefficients for principle component 

analysis were derived from pixels within the fire using an unstandardized principle component transform (based on covariance matrix) and are 

defined in the appendix. 

 

1
5

 



16 

 

 

 

1
6
 1

6
 

2.4. LiDAR Metrics 

The metrics used in this study (Table 1.3) were selected based on use in other forestry 

applications (e.g., Hudak et al., 2012; Wing et al., 2012), comparability with fire-effects strata 

assessed in CBI (Key & Benson, 2006), and theoretical sensitivity to fire effects. Based on the 

recommended definition of surface fuel by Brown, Oberhau, & Johnston (1982), this study used a 1.8 

meter threshold for calculating canopy cover (above 1.8 meters) and mean surface fuel height (below 

1.8 meters). 

The LiDAR point cloud was binned to a 30-meter grid, designed to match the layout of the 

Landsat pixels, and produced a series of descriptive statistics for each cell using the GridMetrics tool 

in FUSION. Selected statistics were then converted to a raster grid using the CSV2Grid function and 

the raster calculator in ArcGIS was used to compute the differenced metric. In all cases, both an 

absolute change (pre – post) and a relative change ((pre – post) / pre) value was calculated. 
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Table 1.3: LiDAR Metrics of Forest Structure 

LiDAR Metric Interpretation
 

pre – post  

Mean of returns ≥ 0.15 m  Δ Mean vegetation height (dMHT) 

Standard deviation of returns ≥ 0.15 m Δ Vegetation height standard deviation (dSD) 

Skewness value of returns ≥ 0.15 m Δ Vegetation height skewness (dSKW) 

Percent of returns < 1 m Δ Percent returns herbs, low shrubs, and debris < 1 m (dS1) 

Percent of returns ≥ 1 m and ≤ 5 m Δ Percent returns tall shrubs and trees 1 – 5 m (dS2) 

Percent of returns > 5 m and ≤ 8 m Δ Percent returns tall shrubs / intermediate trees (dS3) 

Percent of returns > 8 m and ≤ 20 m Δ Percent returns intermediate trees / upper canopy (dS4) 

Percent of returns > 20 m Δ Percent returns upper canopy (dS5) 

Mean height of returns ≤ 1.8 m Δ Mean surface fuel height (dMSFH) 

Percent of returns > 1.8 m Δ Percent Canopy Cover (dCC) 

Using vegetation heights: (mean – min) / (max – min) Δ Canopy Relief Ratio (dCRR) 

Mean vegetation height * canopy cover Δ Canopy Density (dCD) 

(pre - post) / pre  

Mean of returns ≥ 0.15 m  Relative Δ Mean vegetation height (RdMHT) 

Standard deviation of returns ≥ 0.15 m Relative Δ Vegetation height standard deviation (RdSD) 

Skewness value of returns ≥ 0.15 m Relative Δ Vegetation height skewness (RdSKW) 

Percent of returns < 1 m Relative Δ Percent returns herbs, low shrubs, and debris < 1 m (RdS1) 

Percent of returns ≥ 1 m and ≤ 5 m Relative Δ Percent returns tall shrubs and trees 1 – 5 m (RdS2) 

Percent of returns > 5 m and ≤ 8 m Relative Δ Percent returns tall shrubs / intermediate trees (RdS3) 

Percent of returns > 8 m and ≤ 20 m Relative Δ Percent returns intermediate trees / upper canopy (RdS4) 

Percent of returns > 20 m Relative Δ Percent returns upper canopy (RdS5) 

Mean height of returns ≤ 1.8 m Relative Δ Mean surface fuel height (RdMSFH) 

Percent of returns > 1.8 m Relative Δ Percent Canopy Cover (RdCC) 

Using vegetation heights: (mean – min) / (max – min) Relative Δ Canopy Relief Ratio (RdCRR) 

Mean vegetation height * canopy cover Relative Δ Canopy Density (RdCD) 
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2.5. Model Comparison 

Due to the high number of insignificant models, a preliminary screening was conducted of all 

combination pairs of spectral indices and LiDAR metrics using a Pearson’s correlation. Poorly 

correlated pairs (less than an absolute value of 0.5) were eliminated from further evaluation. The 

remaining pairs were assessed using pairwise ordinary least squares (OLS) regressions and comparing 

their r-squared values.  

All statistics was computed in the software R (R Development Core Team, 2014) and applied 

the simultaneous autoregressive model using the ‘spdep’ package (Bivand, 2002), following the 

equation: 

Y = Xβ + λW(Y – Xβ) + ε 

where Y is the dependent variable, X is the explanatory variable, β is the vector of coefficients, λ is 

the autoregressive coefficient, W is the row-standardized matrix of spatial weights, and ε is the 

uncorrelated error term (Cressie, 1993; Haining, 1990). The spatial weights matrix was defined to 

give weight to pixels within a pre-defined neighborhood based on the inverse of the distance from 

focal center to the center of neighboring pixels. These values were then row-standardized, giving the 

neighboring pixels a total summed weight of one, and all other pixels a weight of zero. Following the 

recommendation of Kissling & Carl (2008) and practice of other wildfire studies incorporating 

simultaneous autoregression (Meigs et al., 2016; Prichard & Kennedy, 2014), neighborhood pixels 

were defined as those centered within 60 meters because that distance minimized Akaike’s 

Information Criterion (AIC; Akaike, 1974) and residual spatial autocorrelation over other possible 

neighborhood distances. Due to the large number of observations, this study used a Chebyshev sparse 

matrix approach that estimates the autoregressive coefficient rather than calculating it directly from 

eigenvalues (Pace & LeSage, 2004). This method allowed application of the model to a much larger 
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area than would be computationally possible otherwise, avoiding having to subsample the data as 

others have (Lewis et al., 2011; Wimberly et al., 2009). 

  The outputs of each model pair were compared in order to test the hypothesis that the 

spatially explicit model would provide a superior model to OLS. Using R, the simultaneous 

autoregression produces a Nagelkerke pseudo-r-squared (Nagelkerke, 1991), which is not directly 

comparable to an OLS r-squared. Therefore AIC was used to show improvement; however, the 

pseudo-r-squared value was an acceptable method to compare correlations between spectral indices 

and LiDAR metrics. 

 

3. Results 

R-squared values for the 63 viable OLS regression models were plotted in a matrix to 

examine the magnitude and quality of the relationships between spectral indices and LiDAR metrics 

(Fig. 1.2). The best-observed relationship was between d74 and dCC (r
2
 = 0.63), followed by d75 and 

dCC (r
2
 = 0.62), dSWIR2 and dCC (r

2
 = 0.52), and dMIRBI and RdCC (r

2
 = 0.52). For dSWIR2, 

dNBR, dNDVI, dTCW, dPC1, d74 and d75, the highest r-squared values corresponded to dCC. For 

dB, dG, dSAVI, and dNDWI, dCC was the only LiDAR metric that passed preliminary screening. 

The worst r-squared value for a model not eliminated was between dPC1 and RdS2 (r
2
 = 0.25). All 

models were statistically significant, even poorly performing ones due to the extremely large sample 

size (n = 117,520). 

This study compared AIC values for the spatially explicit and OLS models for each of the 63 

viable pairs (Fig. 1.3). For all pairs the AIC value was lower using simultaneous autoregression, 

indicate model improvement. The biggest decrease in AIC was observed for dSAVI and dCC, while 

the smallest was between d75 and RdS2. Across spectral indices dCC and dS4 saw the greatest 

benefit from simultaneous autoregression. RdS2 was the least improved LiDAR metric for all spectral 
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indices. Pseudo-r-square values were also generated and plotted for each of the model pairs (Fig. 1.4). 

With spatial autocorrelation accounting for the influence of unknown predictor variables, the best-

observed relationship was still d74 and dCC (psedo-r
2
 = 0.86), followed by dNBR and dCC (psedo-r

2
 

= 0.85), dNDVI and dCC (psedo-r
2
 = 0.84). dSWIR2 and dCC (psedo-r

2
 = 0.84), dPC1 and dCC 

(psedo-r
2
 = 0.84), dNDWI and dCC (psedo-r

2
 = 0.84), and dTCG and dCC (psedo-r

2
 = 0.84) were all 

close behind. dCC was the best predicted LiDAR metrics for all spectral indices (psedo-r
2
 ranging 

from 0.79 to 0.86), followed by dS4, RdCC, and dS3. RdS2 uniformly had the weakest correlations to 

all spectral indices (psedo-r
2
 ranging from 0.45 to 0.47).   

 

 
Figure 1.2: Comparison of R-Squared values for pairwise ordinary least squares (OLS) regression 

between LiDAR metrics and spectral indices. Models with a Pearson’s Correlation below an absolute 

value of 0.5 omitted (preliminary screening). Acronyms defined in Table 1.2 and 1.3. 
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Figure 1.3: Improvement over ordinary least squares (OLS) models through the use of simultaneous 

autoregressive (SAR) modelling measured by Akaike information criterion (AIC) values (positive 

indicates improvement, zero no change, and negative suggests worsening). Models with a Pearson’s 

Correlation below an absolute value of 0.5 omitted (preliminary screening). Acronyms defined in 

Table 1.2 and 1.3. 
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Figure 1.4: Comparison of pseudo-r-squared values for simultaneous autoregressive (SAR) 

modelling between LiDAR metrics and spectral indices; models with a Pearson’s Correlation below 

an absolute value of 0.5 omitted (preliminary screening). Acronyms defined in Table 1.2 and 1.3. 

 

 

4. Discussion 

4.1. Canopy Cover 

The results suggest that LiDAR estimated change in canopy cover is the primary biophysical 

fire effect detected by spectral remote sensing, since that metric produced the best correlation with all 

spectral indices. The finding that changes in the top-most-surface is more detectable by spectral 

remote sensing than any other structural change is supported by other studies. Using fires across the 

western U.S., Hudak et al. (2007) demonstrated that primarily the surface cover fractions rather than 
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understory vegetation or soil effects influenced spectral response. Field estimates of change in canopy 

cover using the Forest Vegetation Simulator (FVS; Dixon, 2002) also have an established relationship 

with RdNBR in California ecosystem (Miller & Quayle, 2015; Miller, Knapp, et al., 2009). Absolute 

change in canopy cover derived from a LiDAR line transect was also the best correlated metric to 

post-fire NBR, dNBR, and RdNBR using all data points in a boreal forest ecosystem (Wulder et al., 

2009).  

 Using simultaneous autoregression, the indices that had the best relationship to dCC were d74 

and dNBR, both of which use the SWIR2 and NIR bands. The individual SWIR2 band had a strong 

relationship with dCC, while dNIR was a strong predictor only when used in combination with other 

bands (i.e., d74, dNBR, dNDVI). Many other studies have indicated that SWIR2 and NIR provide the 

best correlation with field measurements incorporating fire effects on all strata (Key & Benson, 2006; 

Miller & Yool, 2002; van Wagtendonk et al., 2004; White et al., 1996). Based on these findings, 

SWIR2 appears to be the most sensitive band for detecting fire-induced changes for canopy cover.  

 

4.2. LiDAR Metrics 

The change in percent of returns below 1 meter (dS1) appeared to be influenced primarily by 

topography, either because of fire behavior in this stratum or as an artifact from height normalization 

of the LiDAR data. In either case, dS1 or RdS1 were not well correlated with spectral indices. Mean 

surface fuel heights (dMSFH and RdMSFH) were also not well correlated, but did reveal a distinct 

trend. At low levels of spectral change, dMSFH and RdMSFH varied considerably, but at higher 

levels of spectral change they exhibited decreasing fuel heights consistent with expected 

consumption. The low correlation and extreme variation at low severity levels might suggest that 

spectral remote sensing is not fully able to detect changes in the understory when canopy is intact. 
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Moving up the strata to change in percent returns 1-5 meters (dS2) and up through percent of 

returns from 5-8 meters (dS3) and percent of returns from 8-20 meters (dS4), correlations with 

spectra gradually improved. Other than changes in canopy cover (dCC and RdCC), the best correlated 

LiDAR metrics were dS3 and dS4. The model improvements observed with increasing height strata 

highlight the difficulty of measuring reflectance values anywhere but the top-most-surface. The 

exception to this trend was the poor correlation observed between change in percent returns above 20 

meters (dS5) and the spectral indices. While 73% of pixels had pre- and post-fire LiDAR returns 

above 20 meters, they were usually few in number, having a median value of only 3-4% of all returns 

in the pixels having returns in that strata. Therefore, the poor correlation between dS5 or RdS5 and 

any of the spectral indices might be a result of the dearth of vegetation in most areas at those strata 

(largely treetops) and the consequential influence from spectral reflectance in the stratum below.  

Models using relative delta LiDAR metrics also had lower pseudo-r-squared values than their 

absolute delta counterparts did, indicating that for this type of forested ecosystem absolute measures 

of change were easier to detect using spectral remote sensing. In a similar study, Wulder et al. (2009) 

tested post-fire NBR, dNBR, and RdNBR against absolute and relative change in structure derived 

from a LiDAR transect. Their work does not indicate significant differences in model quality between 

absolute and relative change, but their sample size was considerably smaller (n = 67) than ours and in 

a notably different ecosystem. All of the relative delta LiDAR metrics tested also tended to emphasize 

change opposite from fire effects due to outliers experiencing extremely negative values. The relative 

delta metrics could not exceed a value of one, which represents complete change from pre-fire 

condition. However, there was no theoretical limit in the opposite direction, so in places where post-

fire values were much higher than pre-fire values, wildly negative values resulted.  

Classic statistical metrics derived from the LiDAR point cloud (i.e., mean height, standard 

deviation, and skewness) did not perform well and were removed during preliminary screening. 
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RdCD, which is a function of mean height and canopy cover, was included in the analysis and 

modelled with dMIRBI and d75. However, the pseudo-r-squared values were among the lowest for 

the spatially explicit model, indicating little evidence of a relationship between classic statistical 

measurements of the point cloud and spectral change. 

 

4.3. dNBR and RdNBR 

Because of their widespread use and adoption into MTBS, a discussion of dNBR and RdNBR 

is warranted. In this study, dNBR outperformed RdNBR across all structural metrics. This was 

foremost the result of two distinctly different relationships observed between RdNBR and the LiDAR 

metrics (Fig. 1.5). Further investigation revealed that in areas where pre-fire NBR was near zero and 

post-fire NBR was negative, the RdNBR equation produced unreasonably high values that do not fit 

into a linear or non-linear model. McCarley et al. (Chapter 2, this thesis) determined that these areas 

corresponded to where pre-fire mountain pine beetle mortality had occurred. These results not only 

contradict studies that suggest RdNBR would perform better in forests where pre-fire disturbance has 

resulted in heterogeneous vegetation cover (Miller & Thode, 2007), but also raise questions regarding 

recent studies that have assessed the impact of mountain pine beetle outbreaks on subsequent fire 

severity utilizing RdNBR as a proxy for burn severity (Meigs et al., 2016; Prichard & Kennedy, 

2014). 
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Figure 1.5: Scatterplot of the Relative delta Normalized Burn Ratio 

(RdNBR) and change in percent canopy cover measured by LiDAR. 

 

 

For this fire, dNBR was slightly outperformed in the prediction of all of the LiDAR metrics 

except dMSFH and RdMSFH by d74, a simple ratio utilizing the same Landsat bands as dNBR. 

Nonetheless, significant evidence was not observed indicating d74 would make a clearly superior 

index. Furthermore, the use of the normalized form may produce results that are more consistent 

when comparing fires across regions and with differing levels of scene illumination (Key & Benson, 

2006). dNDVI and dNBR performed similarly when compared with dCC, and mirrored each other in 

comparison with the other LiDAR metrics. Hudak et al. (2007) also reported similarities in 

performance between post-fire NDVI and NBR when predicting field measures of fire effects, 

although their study indicated weaker (although not significantly) values of dNDVI. These results 
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suggest that dNDVI may be useful when Shortwave Infrared (SWIR) data are not available, but the 

strong correlations found with SWIR2 suggest that dNBR is a better burn severity index. 

 

4.4. Spectral Indices 

SWIR2 was the individual band with the best relationship to structural change. dCC was 

weakly correlated to dB, dG, and dR. A better relationship with dNIR or dR and dCC was expected 

given the sensitivity of these bands to fire-induced changes in vegetation (Chuvieco, Martín, & 

Palacios, 2002; Rogan & Yool, 2001). However, the poor relationship with dNIR is consistent with 

Smith et al. (2009), who demonstrated that near infrared reflectance was insensitive to mean LiDAR 

plot height. Although a strong correlation was not observed between dNIR or dR, dNDVI was a good 

indicator of LiDAR metrics, particularly change in canopy cover.  

While all of the spectral indices tested produced better correlations with dCC than RdCC, d74 

was most suited to predicating relative measures of change. One limitation to this conclusion is that 

no relative spectral indices were used other than RdNBR (which was eliminated from analysis due to 

the extreme values produced in some areas, as noted above). While the use of other relative indices 

may provide better relationships to relative LiDAR metrics, evidence was not observed suggesting 

that they would outperform the relationships observed by this study. 

 

4.5. Simultaneous Autoregressive Model 

All models were improved by the use of simultaneous autoregression, supporting its value for 

landscape assessment of fire effects (Meigs et al., 2016; Prichard & Kennedy, 2014; Wimberly et al., 

2009). The greatest improvement in AIC was for dCC, which was already the best-predicted 

structural change measure. Prior attempts to model burn severity across landscapes and understand 

drivers of burn severity have found topography to be the strongest predictor of burn severity (Birch et 



28 

 

 

 

2
8
 2

8
 

al., 2015; Dillon et al., 2011). However, these studies note the limitations of trying to predict burn 

severity at 30-meter spatial resolution utilizing predictor variables such as climate and weather, which 

are only available at coarser spatial resolutions. This suggests that spectral indices using a 

simultaneous autoregressive model might be the best proxy for specific biophysical measures of 

change (i.e., change in canopy cover), as it allows for consideration of additional explanatory 

environmental variables known to contribute to fire behavior such as climate, topography, and 

vegetation, without requiring that these variables be included in the models (Kissling & Carl, 2007).  

 

4.6. Future Work 

One obvious limitation is that this study was conducted on a single fire, thus the potential for 

these models to be applied regionally or globally is uncertain. Nonetheless, the primary objective was 

not to establish a universal model between spectral remote sensing and structural change, but to 

validate the utility of Landsat spectral change indices by exploiting the opportunity afforded by the 

availability of pre- and post-fire LiDAR collections. LiDAR provides a physical measure of 

vegetation structure change that can be binned at a resolution to commensurate with Landsat. The 

correlations observed suggest that further study is warranted in other vegetation types, but as 

acquisition of LiDAR data increases, more pre- and post-fire datasets will be available to replicate 

this validation of Landsat sensor-derived spectral indices of burn severity. The need to define 

ecosystem-specific models that predict specific fire-induced forest structural change metrics at 

regionally significant scales is documented (Kolden et al., 2015), but as long as LiDAR remains cost-

prohibitive, a robust spectral proxy derived from freely available Landsat data can provide effective 

measures of biophysical change that managers and scientists need. 

In this study, all LiDAR points were analyzed regardless of other attributes. However, 

recently other studies have introduced the possibility of separating live and dead LiDAR returns using 
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intensity values (Kim et al., 2009; Wing, Ritchie, Boston, Cohen, & Olsen, 2015). This analysis may 

enhance future models since change in live canopy cover would likely be better correlated to spectral 

change.  

LiDAR also offers the opportunity to derive useful data such as biomass, basal area, or leaf 

area index in places where field calibration sites are available (Hudak et al., 2009; Lefsky et al., 

2002). The relationship between spectral data and these measurements may offer insights that 

structural metrics cannot. Given the importance of accurately modelling carbon emissions, LiDAR 

derived measures of change in biomass may prove critical in continuing to evaluate the ability for 

spectral remote sensing to measure emissions and be scalable regionally and globally.  

Finally, the issues observed with RdNBR in areas experiencing pre-fire mountain pine beetle 

mortality suggest a need to explore the effect of pre-fire disturbance on the ability to accurately model 

fire effects across a mosaic of forest histories. While numerous studies have examined the 

relationship between mountain pine beetle and burn severity (e.g., Agne et al., 2016; Harvey, Donato, 

& Turner, 2014; Meigs et al., 2016), none have addressed this issue at the landscape scale using 

measures of severity other than reflectance. The availability of pre- and post-fire LiDAR presents a 

rare opportunity to understand the effect of mountain pine beetle on subsequent structural change 

cause by wildfire. 

 

5. Conclusions 

 This work helps address a critical gap in understanding the relationship between biophysical 

fire effects and spectral remote sensing by using multi-temporal LiDAR across an entire fire to 

measure fire-induced structure change. The use of LiDAR bypasses the primary difficulty with 

comparing multi-temporal spectral data to field measurements, which is the lack of pre-fire field 

observations. In this analysis, certain spectral indices, most notably dNBR, successfully detected 
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change in canopy cover. Accurate detection of structural change in lower forest strata were not 

observed, suggesting that spectral remote sensing is primarily limited to detecting fire-induced 

changes in the top-most-surface. This finding is significant given the current use of reflectance data to 

evaluate post-fire habitat, secondary fire effects (i.e., flooding and erosion), comprehensive severity 

ratings, and carbon emissions. As LiDAR coverage increases spatially and temporally, there will be 

opportunities to validate reflectance-based spectral indices to structural measures of change derived 

from LiDAR with high confidence at a commensurate scale.   
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Chapter 2: Landscape-scale Quantification of Fire Effects Following Mountain 

Pine Beetle Epidemic and Timber Harvest 

T. Ryan McCarley, Crystal A. Kolden, Nicole M. Vaillant, Andrew T. Hudak, Alistair M.S. Smith 

In preparation for Forest Ecology and Management 

 

Abstract 

Across the western United States, bark beetles, timber harvest, and wildfire are three primary 

drivers of tree mortality and carbon balance. While these agents of forest change frequently overlap 

spatially, uncertainty remains regarding their interactions and impacts, particularly the influence of 

insect outbreaks on subsequent fire effects. Acquisition of pre- and post-fire Light Detection and 

Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided a unique opportunity 

to isolate quantitative fire effects from other agents of change across an entire wildfire. This study 

characterizes the influence of pre-fire MPB and harvest disturbances on LiDAR-estimated change in 

canopy cover. Consistent with the literature, a lower reduction of estimated canopy cover was 

observed for areas where timber harvest occurred pre-fire. However, in contrast to several recent 

studies in the same region, a greater loss of forest canopy was observed in areas experiencing pre-fire 

MPB. Notably, this trend was observed even when accounting for heterogeneity in pre-fire canopy 

cover. Harvest treatment type was not as important as time since treatment, and consistent with the 

literature, the estimated reduction in canopy cover was observed to be greater in older stands. 

However, these results suggest that further research is critically needed to understand the complexity 

of MPB, timber harvest, and wildfire interactions. 

Keywords: wildfire, LiDAR, canopy cover, eastern Cascades, fuel treatments 
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1. Introduction 

Climate change is facilitating large-scale ecological disturbance, including potential increases 

in larger, more intense wildfires (Barbero et al., 2015; Littell et al., 2009; Westerling et al., 2006) and 

bark beetle outbreaks that have reached levels unprecedented for the previous 125 years (Raffa et al., 

2008). When considered along with timber harvest, these agents of forest change represent three of 

the most significant drivers of tree mortality across the western United States (Hicke, Meddens, & 

Kolden, 2015). Bark beetle epidemics preceding wildfire have been hypothesized to impact both 

wildfire severity and carbon emissions through alteration of pre-fire fuel loading (Hicke et al., 2012; 

Hicke, Meddens, Allen, & Kolden, 2013; Meigs et al., 2009). Timber management activities, 

including fuel treatments, have been shown to strongly influence subsequent wildfire effects, 

primarily by reducing fire intensity (Moghaddas & Craggs, 2007; Pollet & Omi, 2002; Prichard et al., 

2010; Safford et al., 2009, 2012). The intersection of these events is inevitable, so understanding the 

consequences and uncertainties of their combined impacts is critically relevant to forest managers. 

While there has been extensive efforts made to understand how individual agents acting over 

relatively small portions of a fire have influenced subsequent fire effects, there is a considerable 

knowledge gap concerning how agents of change interact over longer temporal periods and across 

larger areas. 

Fire effects are commonly referred to as “fire” or “burn” severity, which although sometimes 

used interchangeably, are usually defined by the temporal scale of analysis, with fire severity 

referring only to immediate effects (Lentile et al., 2006). Both these terms are notoriously ambiguous, 

having been used to describe a range of specific vegetation and soil effects or used more broadly 

without linkage to quantitative physical processes (Keeley, 2009; Lentile et al., 2006). Severity is 

frequently measured at the landscape scale using spectral indices derived from passive spaceborne 



33 

 

 

 

3
3
 3

3
 

remote sensing platforms (Lentile et al., 2006). The delta Normalized Burn Ratio (dNBR; Key and 

Benson, 2006; Lopez-Garcia and Caselles, 1991) and the Relative dNBR (RdNBR; Miller and Thode, 

2007) are the most widely used spectral indices in the USA, primarily because dNBR and RdNBR 

raster products are distributed by the Monitoring Trends in Burn Severity (MTBS) project for all U.S. 

fires greater than 202 hectares in the east, and 404 hectares in the west (Eidenshink et al., 2007). 

Empirical relationships between these products and fire effects on the ground are established using 

specific biometric fire effects (e.g., Hudak et al., 2007; Miller and Quayle, 2015) or comprehensive, 

albeit highly subjective sampling protocols such as the Composite Burn Index (CBI; Key and Benson, 

2006) or Geometrically Structured CBI (GeoCBI; De Santis & Chuvieco, 2009). However, CBI has 

not performed well across all ecosystems (Kasischke et al., 2008) and so dNBR and RdNBR, which 

were originally developed through empirical correlation with CBI, are often applied without field 

validation (Baker, 2015; Meigs et al., 2016), introducing significant uncertainty into what biological 

component or functionality is actually being measured (Kolden et al., 2015). Even when spectral 

indices are correlated to quantitative field measurements, the vast majority of studies lack pre-fire 

observations and instead rely upon estimation of the pre-fire conditions, thus failing to objectively 

capture the true magnitude of change (Roy et al., 2013; Smith et al., 2016, 2010). It is also difficult to 

address landscape fire effects using field measurements alone, as many wildfires are in remote areas 

with difficult terrain and few access roads. This limits field samples to parts of the fire that are safely 

accessible (Cansler & McKenzie, 2012; Hoy, French, Turetsky, Trigg, & Kasischke, 2008; Hudak et 

al., 2007; Key & Benson, 2006), making it very difficult to control for only the agents of change in an 

experimental framework and potentially causing a source of bias. Furthermore, while such studies 

may be able to capture the variability of post-fire effects as indicated from the spectral data (e.g., 

Landsat) in the accessible sampled area, the observed variation in the spectral index may not be the 

best judge of the true surface variability. 
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Although recent studies have explored the effects of antecedent bark beetle outbreaks on burn 

severity, there remain significant limitations in understanding this interaction. Most have only 

analyzed a limited number of ground-based observations and have not demonstrated the scaling up of 

these observations and/or their relationship to remotely-sensed indices (Agne et al., 2016; Harvey et 

al., 2014a, 2014b; Schoennagel, Veblen, Negron, & Smith, 2012; Simard, Romme, Griffin, & Turner, 

2011). Studies analyzing spectral data across landscapes have lacked empirical relationships between 

spectral reflectance and specific biometric fire effects (Bigler, Kulakowski, & Veblen, 2005; 

Kulakowski & Veblen, 2007; Meigs et al., 2016), or validated reflectance using only CBI (Bond, Lee, 

Bradley, & Hanson, 2009; Prichard & Kennedy, 2014). Table 2.1 synthesizes current literature 

examining the effect of bark beetles on burn severity, with specific attention to location, time since 

outbreak, and their definition of severity. There are many more studies using field data to model 

severity (e.g., Page and Jenkins, 2007; Schoennagel et al., 2012; Simard et al., 2011), but this review 

was limited to studies making observations of wildfire effects. 
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Table 2.1: Recent research examining the effect of bark beetle induced tree mortality on burn 

severity. 

Reference Location 
Time since 

Outbreak 

Definition of Burn 

Severity 

Burn Severity 

Response 

Turner et al., 

1999 

Greater 

Yellowstone 

Ecosystem 

5-17 years 

Observational assessment of 

soil and vegetation (Turner 

et al. Table 1) 

Decreased then 

increased at higher 

beetle intensity 

Bigler et al., 

2005 
Colorado ~60 years dNBR Increased 

Kulakowski 

and Veblen, 

2007 

Colorado 
0-5 years 

 
dNBR  No effect 

Bond et al., 

2009 

Southern 

California 
0-1 years RdNBR No effect 

Kulakowski 

and Jarvis, 

2011 

Colorado and 

Wyoming 
Variable Undefined No effect 

(Harvey et al., 

2014a) 

Greater 

Yellowstone 

Ecosystem 

0-3 years; 

3-15 years 

Char height/bole scorch, 

tree-mortality, depth and 

char of post-fire litter 

Variable, increased 

(0-3 years), no 

effect (3-15 years) 

(Harvey et al., 

2014b) 

Northern 

Rocky 

Mountains 

0-2 years; 

3-10 years 

Char height/bole scorch, 

tree-mortality, depth and 

char of post-fire litter 

Variable, mostly no 

effect 

Prichard and 

Kennedy, 2014 
Washington 0-3 years RdNBR Increased 

Agne et al., 

2016
 Oregon 8-15 years

* 

CBI, char height, basal area 

killed, crown consumed, 

depth and char of post-fire 

litter 

Decreased 

Meigs et al., 

2016 

Washington 

and Oregon 
Variable RdNBR Decreased 

McCarley et al. 

(This Study)
 Oregon 6-12 years

* LiDAR-estimated change in 

canopy cover 
Increased 

* Differences in reported time since outbreak for the same fire (Pole Creek) were due to Agne et al. 

(2016) using the year of epidemic initiation at their study plots (Michelle Agne, Oregon State 

University, Corvallis, Oregon, USA, personal communication), while McCarley et al. (This Study) 

reported time since outbreak using the peak period of mortality across the LiDAR acquisition area 

(Appendix C). 

 

Studies examining relationships between antecedent forest treatments and burn severity have 

similar limitations. Many are based on theoretical fire behavior (Finney, 2001; Stephens & 

Moghaddas, 2005; Stephens et al., 2009; van Wagtendonk, 1996), while those observing fire effects 

in the field are based on a finite number of sampling plots rather than landscape scale synoptic 
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measurements (Kennedy & Johnson, 2014; Moghaddas & Craggs, 2007; Pollet & Omi, 2002; 

Prichard et al., 2010; Ritchie et al., 2007; Safford et al., 2009, 2012; Strom & Fulé, 2007). These 

studies also face a common challenge inherent to fire ecology: the lack of pre-fire data. Few field 

studies have measurements of treated and untreated stands before and after a fire (Raymond & 

Peterson, 2005), and those that do rely on the assumption that their plots represent the range of 

heterogeneity in severity seen across the fire. When landscape scale severity has been measured, only 

unitless spectral indices (i.e., dNBR or RdNBR), sometimes validated using CBI (another index), 

have been used (Finney, McHugh, & Grenfell, 2005; Prichard & Kennedy, 2014; van Leeuwen, 2008; 

Wimberly et al., 2009). 

To-date, no prior study has quantified specific, biometric effects of wildfire on forests 

following MPB-induced tree mortality or forest treatments across an entire fire, in part because of the 

challenges in acquiring field observations of forest biometrics as described above. However, the 

recent general increase in available Light Detection and Ranging (LiDAR) data has resulted in several 

cases where repeat LiDAR data capture the changes effected by a wildfire over large areas, including 

the event analyzed here, which occurred in an forest where varying levels of extensive MPB damage 

and multiple timber harvest treatment types and ages were present pre-fire. LiDAR is a proven forest 

measurement tool, able to detect numerous structural changes in canopy height, cover, height 

distribution of outer canopy surfaces, vertical distribution of canopy material, volume, biomass, and 

gap size (Hudak et al., 2009; Kane et al., 2013; Lefsky et al., 2002). Following the 2012 Pole Creek 

Fire in central Oregon, post-fire LiDAR data was acquired in 2013 to resample an area flown in 2009 

following an extensive MPB outbreak in the early 2000s. Using these data, McCarley et al. (Chapter 

1, this thesis) explored empirical relationships between spectral indices derived from Landsat and 

landscape-scale measurements of forest structure change by LiDAR. They found that change in 

canopy cover was the most accurately predicted fire effect and that a multi-temporal band ratio (d74) 
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outperformed other more widely utilized indices (i.e., dNBR and RdNBR). However, they also noted 

anomalous patterns in their data that were spatially coincident with pre-fire tree mortality from MPB-

induced tree mortality and forest harvest. Since the McCarley et al. (Chapter 1, this thesis) analysis 

did not explore the specific impacts of pre-fire disturbances on model relationships, their results raise 

significant questions regarding the influence of MPB and forest harvest on both model accuracy and 

subsequent fire effects. 

 The objective of this study was to determine the influence of antecedent MPB outbreak and 

forest harvest treatments on subsequent fire severity. This study quantifies this effect by evaluating 

change in canopy cover (dCC) as estimated by multi-temporal LiDAR for areas identified as being 

affected by (1) MPB followed by wildfire (MPB/Fire), (2) harvest followed by wildfire (HARV/Fire), 

(3) a combination of forest harvest and MPB followed by fire (HARV/MPB/Fire), and (4) wildfire 

having not been proceeded by either MPB or harvest (Fire-only). Areas outside of the fire affected by 

(5) MPB, (6) HARV, (7) HARV/MPB, and (8) no pre-fire agent (No Agent/No Fire) were quantified 

as a control. In addition to analyzing these differences, this study also sought to understand how MPB 

outbreak intensity, harvest treatment type, and time since forest harvest treatment affected severity by 

exploring trends in these attributes. 

 

2. Material and Methods 

2.1. Study Area 

 The Pole Creek Fire (10,800 ha) occurred in September 2012 in the eastern Cascade 

Mountains of central Oregon (Fig. 2.1). One-third of the fire area falls within the Three Sister’s 

Wilderness Area. Of the remaining two-thirds, timber harvest is allowed on 3,403 hectares and 

another 2,536 hectares with scenic view restrictions. MPB caused significant mortality, especially 
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throughout the wilderness area, between 2000 and 2006 (Appendix C). For additional description of 

the study area, see McCarley et al. (Chapter 1, this thesis). 

 
Figure 2.1: Location of Pole Creek Fire (white outline) in central Oregon. Data overlaid on 2014 

National Agriculture Imagery Program imagery. 

 

 

2.2 LiDAR Data 

 Pre- and post-fire LiDAR data available across the entire fire were processed and transformed 

to a 30-meter grid representing estimated dCC as described in McCarley et al. (Chapter 1, this thesis).  

 

2.3. MPB Data 
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 Aerial detection survey (ADS) data was acquired from the USDA Forest Service Pacific 

Northwest Region and converted mortality estimates into trees per hectare (TPH). Preliminary 

analysis of the ADS data showed that peak mortality occurred between 2000 and 2006 (Appendix C); 

therefore, the sampled data was limited to those years. ADS polygons were converted into 30-meter 

gridded data such that the output raster cells aligned with those of the 30-meter LiDAR-derived dCC 

raster. However, polygons are sketched at a map-scale between 1:250,000 and 1:50,000 depending on 

the flight (McConnel, Johnson, & Burns, 2000), meaning the distance between two Landsat pixels 

could be as little as 0.12 centimeters on paper. The unit of observation, and thus effective minimum 

mapping unit according to some sources, is 0.4 hectares (Johnson & Ross, 2008). Due to the noise in 

the original ADS data, a 3x3 moving window was applied to smooth the mortality estimates. 

Subsequent testing showed that the 3x3 filtered data yielded better results than the uncorrected 30-

meter ADS data. Finally, TPH estimates were summed over the seven-year window from 2000-2006 

to produce cumulative MPB mortality (Fig. 2.2).  
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0
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0
 

 
Figure 2.2: (Left) Cumulative area affected by mountain pine beetle reported by areal detection survey data between 2000 and 2006 (peak 

outbreak years). Harvest treatment types (Center) and treatment age (Right) reported by the Deschutes National Forest. 

4
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Multiple sources have suggested that ADS data give only rough estimates of mortality 

(McConnel et al., 2000; Meddens, Hicke, & Ferguson, 2012; Meigs, Kennedy, & Cohen, 2011). This 

study also recognized that at relatively low TPH values, MPB–induced tree mortality is 

indistinguishable from background levels from other causes of mortality (i.e., disease, wind throw, 

drought). During analysis for McCarley et al. (Chapter 1, this thesis), changes in the ability of 

spectral indices to model LiDAR-estimated dCC were observed at different TPH levels. Expanding 

on this finding, ordinary least squares (OLS) regressions were developed between three spectral 

indices, chosen for their dominance in the literature and performance in McCarley et al. (Chapter 1, 

this thesis), and change in canopy cover for Fire-only areas. Model performance was then evaluated 

across varying TPH thresholds (determining which areas to include in Fire-only), looking for changes 

in r-squared values that would indicate the limit of MPB influence. Use of the ‘segmented’ package 

(Muggeo, 2008) in R (R Development Core Team, 2014) allowed for quantification of specific 

breakpoints (Appendix D). The common breakpoint for all indices was near 16 TPH, only 4 TPH 

higher than the threshold used in similar work to isolate epidemic MPB outbreak  (Agne et al., 2016). 

For the remainder of the analysis MPB-affected areas were defined as those with impacts above 

background noise (>16 TPH). 

 

2.4. Forest Treatment Data 

 Forest harvest activity history was provided by the Deschutes National Forest, which has 

spatial records of harvest and fuel reduction activities dating back to the 1960s (Fig. 2.2). Inside the 

fire perimeter, 10 unique combinations of forest treatments were identified. These include stand 

clearcut (570 ha); single tree selection (70 ha); commercial thin (47 ha); a combination of 

shelterwood establishment and removal cut (40 ha); overstory removal cut (29 ha); shelterwood 

removal cut (28 ha); shelterwood establishment cut (19 ha); a combination of pre-commercial thin, 
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commercial thin, and pile burning (6 ha); two-aged seed-tree and removal cut (4 ha); and two-aged 

coppice cut (3 ha). 

Areas where forest treatments occurred after the pre-fire LiDAR acquisition date in 2009 

(1,187 ha total; 137 ha inside the fire perimeter) were excluded from the analysis. Timing of the most 

recent treatments inside the fire varied, the most recent being pile burning in 2006 and the oldest 

being overstory removal cutting in 1971. Activity age outside the fire ranged from 1962 through 

2008. Treatment age was classified broadly using decades prior to fire: 2002-2012 (9 ha), 1992-2002 

(251 ha), 1982-1992 (307 ha), and pre-1982 (250 ha). 

 

2.5. Analysis 

  This study evaluated the effect of MPB and timber harvest on LiDAR-estimated dCC by 

comparing the distributions for possible combinations of disturbances (Fig. 2.3): MPB/Fire, 

HARV/Fire, HARV/MPB/Fire, Fire-only, MPB, HARV, HARV/MPB, and No Agent/No Fire (i.e., 

control). Due to the large sample size, tests of significance (i.e., ANOVA) were excessively sensitive 

to differences between the groups (i.e., all differences are significant), so this study instead describes 

the differences and reports median value (x̃) and interquartile range (IQR) for each distribution. The 

effect of MPB and timber harvest was further explored by repeating this analysis across harvest types 

and at increasing levels of pre-fire beetle mortality. Due to the uncertainty associated with ADS 

mortality estimates, MPB impacts were binned into 24 TPH increments using the range from greater 

than 16 TPH to the maximum observed cumulative TPH (183). The results visualize the distribution 

of dCC values for the binned TPH groups, and compare these to HARV/Fire and Fire-only areas. 

Forest treatment activities were separated by type, excluding two-aged coppice cut, two-aged seed-

tree and removal cut, and the combination of pre-commercial thin, commercial thin, and pile burning; 

as these areas were deemed too small to be representative (3 ha, 4 ha, and 6 ha, respectively). The 
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distributions of the different timber harvest types were compared with each other and MPB/Fire and 

Fire-only pixel distributions, looking for trends in severity caused by harvest type. Finally, the 

distribution of the four harvest-age classes were plotted to evaluate trends in severity resulting from 

time since harvest. 

 

 
Figure 2.3: Possible combinations of forest agents of change represented in the 

study: Mountain pine beetle (MPB) followed by wildfire (MPB/Fire), harvest 

followed by wildfire (HARV/Fire), a combination of forest harvest and MPB 

followed by fire (HARV/MPB/Fire), wildfire having not been proceeded by either 

MPB or harvest (Fire-only); and areas outside of the fire affected by MPB, HARV, 

HARV/MPB, and no pre-fire agent (No Agent/No Fire). 
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3. Results 

 Exploring burn severity as measured by LiDAR-estimated change in canopy cover, there 

were noticeable differences in the median values between the pre-fire agents of change (Table 2.2 & 

Fig. 2.4). All areas experiencing fire showed higher severity than areas not experiencing fire. 

Considering the areas within the fire perimeter, those experiencing pre-fire MPB mortality had the 

highest severity (MPB/Fire), followed by Fire-only areas, HARV/Fire, and finally areas 

HARV/MPB/Fire. In addition to observing higher severity in MPB/Fire than HARV/Fire or Fire-

only, burn severity increased with MPB outbreak intensity (Table 2.3 & Fig. 2.5). 

 

Table 2.2: Descriptive statistics for possible combinations of forest agents. 

Change agents Size (ha) 
Median 

(Δ%CC)* 
IQR (Δ%CC)* 

MPB/Fire 6,055 18.8 8.8 – 32.2 

Fire-only 3,332 11.1 4.9 – 21.6 

HARV/Fire 816 3.9 -0.1 – 11.6 

HARV/MPB/Fire 411 2.1 -1.0 – 7.10 

MPB 3,067 1.0 -1.0 – 3.70 

No Agent/No Fire 5,225 0.1 -1.6 – 2.20 

HARV 1,460 -1.2 -3.5 – 1.40 

HARV/MPB 281 -1.4 -4.3 – 1.30 

    * Change in percent canopy cover estimated by LiDAR = Δ%CC 

 

Table 2.3: Descriptive statistics for levels of mountain pine beetle (MPB) intensity. 

MPB Intensity (Trees 

per Hectare (TPH)) 
Size (ha) 

Median 

(Δ%CC)* 
IQR (Δ%CC)* 

016 – 40 1,436 11.6 5.3 – 24.0 

040 – 64 1,283 17.7 8.4 – 31.9 

064 – 88 1,249 22.3 10.9 – 33.8 

088 – 112 874 22.7 11.4 – 34.8 

112 – 136 779 19.3 9.6 – 32.5 

136 – 160 316 25.1 14.9 – 34.2 

160 – 183 119 33.0 27.2 – 39.2 

    * Change in percent canopy cover estimated by LiDAR = Δ%CC 
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Results indicated lower severity in timber harvest treatments than in MPB or Fire-only, with 

little variation between treatment types (Table 2.4 & Fig. 2.6). The lowest average severities occurred 

in shelterwood removal cuts, followed by commercial thinning, single tree selection, shelterwood 

establishment cuts, and overhead removal cuts. The highest severities were in stand clearcuts and the 

combination of shelterwood establishment and removal cuts. Time since treatment had a small effect 

on severity (Table 2.5 & Fig. 2.7), with relatively higher severity for treatments between 1971 and 

1982 and little difference for more recent activities: 1982 to 1992, 1992 to 2002, and 2002 until the 

first LiDAR acquisition in 2009. 

 

Table 2.3: Descriptive statistics for harvest treatment type. 

Harvest Treatment Type Size (ha) 
Median 

(Δ%CC)* 

IQR 

(Δ%CC)* 

Shelterwood Establishment and Removal Cut 40 7.7 3.2 – 16.0 

Stand Clearcut 570 5.0 0.0 – 13.5 

Overhead Removal Cut 29 2.6 0.3 – 5.6 

Shelterwood Establishment Cut 19 2.5 -1.0 – 6.60 

Single Tree Selection Cut 70 1.9 -1.2 – 5.60 

Commercial Thinning 47 1.7 -0.8 – 7.10 

Shelterwood Removal Cut 28 0.1 -1.8 – 3.20 

* Change in percent canopy cover estimated by LiDAR = Δ%CC 

 

Table 2.3: Descriptive statistics for harvest treatment age. 

Harvest Treatment Age Size (ha) 
Median 

(Δ%CC)* 
IQR (Δ%CC)* 

1971 – 1982 250 6.7 1.5 – 14.4 

1982 – 1992 307 2.4 -1.2 – 9.50 

1992 – 2002 251 3.5 -0.1 – 10.1 

2002 – 2009 9 2.4 0.6 – 4.80 

    * Change in percent canopy cover estimated by LiDAR = Δ%CC 
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Figure 2.4: Distribution of change in percent canopy cover for possible combinations of agents: 

timber harvest and mountain pine beetle (HARV/MPB), HARV, No Agent/No Fire, MPB, timber 

harvest and mountain pine beetle followed by fire (HARV/MPB/Fire), HARV/Fire, Fire-only, and 

MPB/Fire. Solid lines represent medians, boxes show the interquartile range, whiskers extend to 1.5 

times the interquartile range, and points are outliers. 
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Figure 2.5: Distributions of change in percent canopy cover for timber harvest followed by wildfire 

(HARV/Fire), Fire-only, and cumulative MPB-induced mortality binned at 24 trees per hectare 

(TPH). Solid lines represent the medians, boxes show the interquartile range, whiskers extend to 1.5 

times the interquartile range, and points are outliers. 
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Figure 2.6. Distributions of change in percent canopy cover for mountain pine beetle followed by 

wildfire (MPB/Fire), Fire-only, and harvest treatment types: combination of Shelterwood 

Establishment and Removal Cut (SE+SR), Stand Clearcut (SC), Overstory Removal Cut (OR), 

Shelterwood Establishment Cut (SE), Single Tree Selection (STS), Commercial Thin (CT), and 

Shelterwood Removal Cut (SR). Solid lines represent the medians, boxes show the interquartile 

range, whiskers extend to 1.5 times the interquartile range, and points are outliers. 
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Figure 2.7: Distributions of change in percent canopy cover for mountain pine beetle followed by 

wildfire (MPB/Fire), Fire-only, and harvest treatment age binned by decades before fire. Solid lines 

represent the medians, boxes show the interquartile range, whiskers extend to 1.5 times the 

interquartile range, and points are outliers. 

 

 

4. Discussion 

4.1. Effect of MPB 

This study observed higher average burn severities in areas of antecedent MPB tree mortality 

than in areas unaffected or with background levels of mortality (TPH ≤ 16). Areas experiencing only 

MPB (i.e., no fire) had greater reductions in canopy cover than other agent combinations outside the 

fire perimeter, suggesting some of the observed effect could be post-MPB snag fall. However, the 

change in canopy cover was significantly below that of MPB/Fire and also below the other agent 

combinations within the fire perimeter.  

A positive relationship was noted between MPB intensity and subsequent burn severity 

(defined here as the reduction in estimated percent canopy cover). This trend was observed even 
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when normalizing for stand density by using change in canopy cover as a percent of pre-fire LiDAR 

canopy returns (Fig. 2.8). These results agree with several prior studies (Table 2.1); however, the 

definition of severity, time since outbreak, and method of identifying beetle impacts varied 

significantly in these studies. One notable difference was time since outbreak, as Prichard and 

Kennedy (2014) and Harvey et al. (2014a) found higher severities only in recently affected stands (0-

3 years since attack), which diverge considerably in structure and flammability from the stands 

observed by this study due to needle retention (Hicke et al., 2012; Jolly et al., 2012). Meanwhile, 

Bigler et al. (2005) evaluated stands at much older post-outbreak stage (~60 years), well into the 

period of snag-fall and regrowth (Hicke et al., 2012) and beyond what other studies have directly 

measured (Donato, Harvey, Romme, Simard, & Turner, 2013; Schoennagel et al., 2012).  

The results of this study diverge from studies finding decreased or no effect from antecedent 

MPB on burn severity (Table 2.1). This section focuses on two of the most recent studies that are of 

interest because of their coincident location. Agne et al. (2016) established and evaluated burn 

severity at 52 plots within the Pole Creek fire. They found that their measures of physical burn 

severity (bole char height, proportion of canopy consumed, basal area killed, soil char depth, and 

proportion of ground char) and CBI estimates decreased with increasing MPB effect. Meigs et al. 

(2016) evaluated fires across Oregon and Washington, narrowly excluding the Pole Creek fire due to 

the time period of analysis. They also observed decreased fire severity (defined as RdNBR) in areas 

affected by MPB. Certainly, some of the disagreement in both these cases is due to different measures 

of severity, especially when comparing canopy vegetation and soil effects. However, other measures 

of severity such as proportion of canopy consumed are similar to this studies’ severity measurement, 

leading to uncertainty as to the nature of the difference in results. 

The use of multi-temporal LiDAR improves on these studies in several important ways. 

While Agne et al. (2016) used some quantitative, well-defined measures of burn severity, they lacked 
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pre-fire data. This leads to uncertainty about the accuracy of attributing changes observed post-fire, to 

either fire or MPB (Roy et al., 2013; Smith et al., 2016, 2010). Also, because they established a 

relatively small number of plots, Agne et al. (2016) may not have been able to capture the same range 

of heterogeneity in effects observed by LiDAR over the entire fire. Using multi-temporal reflectance 

data (RdNBR), Meigs et al. (2016) were better able to capture the change at a landscape-scale; 

although, there are considerable issues arising from the use of spectral indices alone as a measure of 

severity. Other studies have already indicated many of these shortcomings (Kolden et al., 2015; 

Lentile et al., 2009; Roy et al., 2006; Smith et al., 2016). However, this study uncovered further cause 

for concern in the abnormal trends noticed when correlating RdNBR to LiDAR metrics. Specifically, 

in areas affected by MPB pre-fire NBR values near zero, combined with negative post-fire NBR 

values related to the fire, cause the RdNBR equation to produce unreasonably high values (between 

2,000 and 18,200), as was noted by Parks et al. (2014). It is doubtful that these higher levels of 

severity can be meaningfully compared to RdNBR values falling within the normal range (below 

2,000). This study observed clear evidence that these anomalous severity values are related to MPB 

through both spatial coincidence and quantification of the error, showing more area being affected at 

higher levels of MPB-induced mortality (Fig. 2.9). Given these limitations, this study presents a valid 

challenge to previous findings of no effect or decreasing burn severity following an MPB outbreak. 
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Figure 2.8: Distributions of relative change in percent canopy cover; adapted from parameters in Fig. 

2.5. Extremely negative outliers not shown. 

 

 

 
Figure 2.9: Percent of anomalous RdNBR values (> 2,000) as a percent of 

all RdNBR for binned cumulative trees per hectare (TPH). 
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4.2. Effect of Timber Harvest 

  The results indicate lower burn severity in timber harvest treatment activity areas, compared 

with areas experiencing pre-fire MPB or fire-only. Outside the fire perimeter timber harvest tended to 

correspond with a slight increase in canopy cover, consistent with expected growth in these areas. 

Finding lower burn severity in treated stands is consistent with previous research, which has modeled 

or observed a reduction in severity corresponding with fewer fuels (Hudak et al., 2011). However, 

this study explores a new method for understanding this question by improving on others’ limitations. 

Prior work on fuel treatment reduction and wildfire severity has generally fallen into three categories. 

The first are studies modeling fire behavior following empirical observation of fuel treatments 

(Finney, 2001; Stephens et al., 2009; van Wagtendonk, 1996). These studies are particularly limited 

because there is no empirical observation of fire effects (because there was no actual fire). They 

provide impetus for experimentation and observation, but provide less significant evidence on their 

own. The second category is studies collecting opportunistic post-fire empirical observations in places 

where wildfire has burned over fuel treatments (Kennedy & Johnson, 2014; Moghaddas & Craggs, 

2007; Pollet & Omi, 2002; Prichard et al., 2010; Ritchie et al., 2007; Safford et al., 2009, 2012; Strom 

& Fulé, 2007). In these instances, findings are limited by lack of pre-fire data, introducing significant 

uncertainty into accurate capture of changes caused by the fire. Additionally, they are limited to a 

finite number of plots, which then have to be scaled-up to make inferences across the landscape, 

thereby extrapolating errors. The third category of prior research on fuel treatments effect on wildfire 

severity is studies making empirical pre- and post-fire observations. These studies are more robust 

than using theoretical fire behavior or limiting work to post-fire measurements and inferences only; 

however, this type of work has thus far been limited in two significant ways. Either observations are 

based on very small treatment areas (Raymond & Peterson, 2005), leading to uncertainty at the 

landscape level, or they use spectral reflectance (i.e., dNBR or RdNBR) (Finney et al., 2005; Prichard 
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& Kennedy, 2014; van Leeuwen, 2008; Wimberly et al., 2009) unrelated to specific biometric 

definitions of burn severity. This study demonstrates that fuel treatments are effective at reducing 

burn severity, as defined by reduction in canopy, while addressing these important shortcomings of 

past research.   

 This was a unique opportunity, as no known studies have evaluated as many treatment types 

for the same fire. Results did not indicate major differences between most treatments, although the 

combination of shelterwood establishment and removal cuts and stand clearcuts had noticeably higher 

severities than other types. This is likely the result of time since treatment, as the oldest treatments 

(occurring 1971-1982) were comprised of the three treatment types with the highest severity 

(combination of shelterwood establishment and removal cuts, stand clearcuts, and overhead removal 

cuts).  

There is considerable interest in understanding how time-elapsed since fuel treatment affects 

fire behavior, but there has been little research in this area, particularly across multiple treatment ages 

and types on a single fire. Some studies have attempted to model trajectories in severity for treated 

and untreated areas, suggesting several decades of reduced severity (Stephens, Collins, & Roller, 

2012; Strom & Fulé, 2007). Using spectral remote sensing, Finney et al. (2005) demonstrated 

evidence of this theory for prescribed burning 1-9 years before the wildfire, while Prichard and 

Kennedy (2014) showed only weak correlation between treatment age and severity for treatments up 

to 30 years old. This study represented a unique opportunity to evaluate a wide range of treatment 

types occurring in a managed forest across a longer period (41 years).  

The results indicate that older treatments tended to burn more severely. The oldest treatment 

class (1971-1982) had the highest burn severity, but still not as high as Fire-only or MPB/Fire. 

Among treatments that are more recent (less than 30 years), no notable difference was observed in 

severity, suggesting that in this ecosystem many decades are needed to accumulate surface and ladder 
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fuels that would lead to a fire that would produce greater canopy consumption. However, the lack of 

differences might also suggest unaccounted for variability in forest treatment type or burning 

conditions. These results are consistent with previous work suggesting managed areas burn more 

severely over time (Finney et al., 2005; Stephens et al., 2012; Strom & Fulé, 2007). 

 

4.3. Effect of Harvest / MPB Combination 

 The results of this study show that the combined effect of MPB and timber harvest produced 

the lowest burn severity of any tested. This agent combination also tended to result in the greatest 

increase in canopy cover (i.e., forest growth) outside the fire perimeter. This study could not 

accurately quantify the contribution each agent has in reducing burn severity, although the other 

results suggest that timber harvest may be the primary driver since MPB alone tended to increase 

severity. This could indicate that timber harvest in post-MPB epidemic areas could reduce future burn 

severity. However, this implication is contingent on an accurate understanding of how MPB affects 

burn severity, for which there is still widespread disagreement in the literature (Hicke et al., 2012). 

 

4.4. Uncertainties and Future Work 

Certain key questions remain regarding the finding that increased severity in MPB-affected 

forests; in particular, the uncertainties tied to the MPB dataset. The ADS measure of mortality is 

based off of the number of observed trees divided by the area of the polygon mortality was observed 

in (McConnel et al., 2000), and is thus insensitive to stocking rate. It is possible that higher TPH 

values are also indicative of denser stands, which are more likely to burn at higher severity already 

(Agee & Skinner, 2005). However, while stocking rates might affect the increased severity observed 

at higher TPH levels, this does not fully explain the higher average severities in MPB/Fire even at 

low TPH levels compared to HARV/Fire or Fire-only. This study also noted that normalization of 
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change in canopy cover with pre-fire cover did not alter the findings (Fig. 2.8). Another issue that 

Prichard and Kennedy (2014) also discussed is that the MPB outbreak occurred primarily in 

Lodgepole Pine (Pinus contorta), which is known to be prone to higher severity fires (Agee, 1993). 

Since there were no homogenous stands of unaffected P. contorta (McCarley et al. Chapter 1, this 

thesis), the effect of MPB from the characteristics of the vegetation could not be separated. 

These reservations highlight the criticality of using accurate MPB mortality estimates in 

future work. Other studies have produced alternatives (Prichard & Kennedy, 2014) or developed 

methodologies that apply corrections to ADS data. Meddens et al. (2012) developed a method of 

adjusting ADS data using species-specific crown area, albeit at a much coarser resolution (1 km) than 

would be useful for this analysis. LandTrendr (Kennedy, Yang, & Cohen, 2010) is an another useful 

approach, which has demonstrated effectiveness for detecting insect damage at a 30-meter resolution 

(Meigs, Kennedy, Gray, & Gregory, 2015). However, the use of this product was beyond the scope of 

the study. 

 Another improvement might be the use of LiDAR intensity values to separate live and dead 

returns. This technique has demonstrated effectiveness in other post-fire environments (Kim et al., 

2009; Wing et al., 2015) and for other post-MPB outbreak forests (Bright, Hudak, Kennedy, & 

Meddens, 2014; Bright, Hudak, McGaughey, Andersen, & Negrón, 2013), and could shed light on 

what type of consumption (i.e., live or dead material) was observed in this study. Such analysis would 

be immensely useful in understanding remaining knowledge gaps regarding the combined effects of 

MPB and wildfire. 

This study did not provide compelling evidence of differences in reduction of burn severity 

for various harvest treatment activities, although time since treatment appeared to play a significant 

role. This finding is consistent with the literature, but is supported only by evidence from a single fire. 
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The significance of time since treatment is not well understood across ecosystems that exhibit 

strikingly different successional characteristics. Further work in this area is warranted. 

Additionally, this study examined burn severity in the canopy only. Studies observing 

thinning or salvage logging have shown an increase in fire severity at the ground level due to an 

increase in fine fuels as a result of those activities (Raymond & Peterson, 2005; Thompson, Spies, & 

Ganio, 2007). Given the range in definitions, caution is urged against using this study to claim 

broadly that burn severity is reduced by timber harvest. These results demonstrate reduced dCC as 

estimated by LiDAR, but additional research is needed to fully understand the complexity of burn 

severity throughout the ecosystem. 

 

5. Conclusions 

 This study demonstrated the utility of LiDAR for understanding the effects of antecedent 

MPB and forest harvest treatments on subsequent burn severity, defined here as change in percent 

canopy cover. This marks a notable improvement over past research, which has been largely limited 

to observations of the post-fire environment only (i.e., no pre-fire data), or conclusions made from 

spectral change (i.e., dNBR and RdNBR) without biometric validation. The results indicate increased 

burn severity, as defined by change in LiDAR-estimated canopy cover, in areas experiencing MPB 

and found burn severity to increase with pre-fire MPB intensity. Conversely, harvest activities led to 

lower burn severity. Although harvest treatment type was not conclusively related to burn severity, 

time since treatment appeared to play a role, with the most recent treatments experiencing the lowest 

average severity. These findings show quantitative evidence that pre-fire agents of forest change are 

important drivers of subsequent fire effects using a specific definition of burn severity across an entire 

fire. This is a significant step in resolving uncertainties concerning the increasing overlap of wildfire, 

MPB, and forest treatments. However, considerable work in this area is still needed. Further work is 
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also warranted in understanding the significant limitations observed in RdNBR for areas experiencing 

pre-fire agents of change. 
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Thesis Conclusions 

Chapter one explored the relationships between spectral indices calculated from Landsat 

imagery and changes in forest structure estimated from multi-temporal LiDAR. This chapter also 

showed how the use of simultaneous autoregression could improve performance by providing a proxy 

for other variables (i.e., geomorphic or climatic process) not in the model (Kissling & Carl, 2007; 

Prichard & Kennedy, 2014; Wimberly et al., 2009). The best relationship was observed between 

LiDAR-estimated change in canopy cover and the d74 index, followed by dNBR and dCC. In 

general, spectral indices were better correlated with LiDAR measures of structure higher in the 

vertical profile of vegetation. Similar to findings from previous work, Landsat band 7 was most 

sensitive to fire effects (Key & Benson, 2006; Miller & Yool, 2002; van Wagtendonk et al., 2004; 

White et al., 1996). The significance of this study is that it indicates the viability of calibrating 

spectral indices to structural measures of change, suggesting feasibility at larger scales. 

 Chapter two explored the impact of pre-fire MPB and forest harvest on subsequent fire-

caused severity, measured by multi-temporal LiDAR estimated change in canopy cover. The results 

show that MPB/Fire areas had the highest burn severity, and that severity increased with pre-fire 

MPB intensity. Comparatively, HARV/Fire areas were associated with reduced severity. In all cases 

areas affected by fire showed greater change in canopy cover than areas outside the fire perimeter. 

Additionally, the results suggested that time since treatment affected severity, as the oldest treatments 

burned the most severely. The observed decrease in severity associated with timber harvest is 

consistent with previous research (e.g., Moghaddas & Craggs, 2007; Prichard, Peterson, & Jacobson, 

2010; Ritchie, Skinner, & Hamilton, 2007; Safford, Schmidt, & Carlson, 2009; Safford, Stevens, 

Merriam, Meyer, & Latimer, 2012; Wimberly et al., 2009). However, uncertainty remains considering 

the impact of MPB outbreaks on subsequent burn severity. 
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 Throughout this thesis, multi-temporal LiDAR exhibited considerable value in measuring fire 

effects across a landscape. This is significant given that few other studies have utilized this tool 

(Bishop et al., 2014; Reddy et al., 2015; Wang & Glenn, 2009; Wulder et al., 2009); and none across 

an entire fire in a forested ecosystem. Pinpointing rehabilitation needs, predicting trends in ecological 

recovery, mitigating secondary fire effects, and understanding forest carbon cycling are all vital tasks 

that require fire effects mapping (Cansler & Mckenzie, 2014; Conard et al., 2002; Eidenshink et al., 

2007; Goetz et al., 2007; Hessburg et al., 2015; Hicke et al., 2003; Kashian et al., 2006; Miller, 

Safford, et al., 2009; Moody et al., 2008; Robichaud et al., 2009; Romme et al., 2011; Turner et al., 

1994). While spectral indices are the dominant method of measuring severity across a landscape, 

there are numerous concerns amongst remote sensing scientists and fire ecologists (Kolden et al., 

2015; Morgan et al., 2014; Roy et al., 2013, 2006; Smith et al., 2016). This work demonstrates the 

utility of multi-temporal LiDAR as a viable method of measuring severity, as shown in chapter two, 

while chapter one indicates the potential fusion of spectral indices and LiDAR metrics. This is 

particularly important as long as multi-temporal LiDAR datasets remain scarce. Given climatic shifts 

toward larger, more extreme wildfires (Barbero et al., 2015; Littell et al., 2009; Westerling et al., 

2006), there has never been a greater need to monitor fire effects at the landscape level. Multi-

temporal LiDAR offers a cutting-edge tool for fire ecologists to meet this challenge.  
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Appendix A: Coefficients for Principle Component Analysis 

Delta Principle Component 1 

(dPC1) 

(dB*0.6052) + (dG*0.5723) + (dR*0.7756) + (dNIR*-0.6761) + 

(dSWIR1*0.8943) + (dSWIR2*0.9720)
 

Delta Principle Component 2 

(dPC2) 

(dB*0.3909) + (dG*0.5048) + (dR*0.2976) + (dNIR*0.7287) + 

(dSWIR1*0.2863) + (dSWIR2*0.0659)
 

Delta Principle Component 3 

(dPC3) 

(dB*0.3339) + (dG*0.4090) + (dR*0.2748) + (dNIR*0.0438) + 

(dSWIR1*-0.3401) + (dSWIR2*0.1592)
 

Coefficients applied to differenced Landsat Bands (Blue (dB), Green (dG), Red (dR), Near Infrared 

(dNIR), Shortwave Infrared 1 (dSWIR1), and Shortwave Infrared 2 (dSWIR2)) 
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Appendix B: Pearson’s Correlation Coefficients for all Model Combinations 

 
Acronyms defined in Table 1.2 and 1.3. 
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Appendix C: Average MPB Mortality 1993-2012 

 
Average mountain pine beetle (MPB) induced mortality from 1993 until the fire (2012) across the 

area of LiDAR acquisition affected by MPB; peak mortality occurs between 2000 and 2006. 
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Appendix D: Model R-squares in Fire-only Areas at Different MPB Levels 

 
Model r-squared values for pixels not experiencing either mountain pine beetle (MPB) or forest 

treatment using different thresholds of MPB. Vertical lines represent breakpoints calculated by the 

iterative procedure, indicating thresholds where increasing MPB intensity changes the model 

(approximately 16 trees per hectare). Spectral indices (delta band 7/4 ratio, d74; delta normalized 

burn ratio, dNBR; and relative dNBR, RdNBR) are regressed on percent canopy cover change using 

the best linear fit.  


