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Abstract

Measuring fire effects using remote sensingriical tofacilitating an ecological
understanding of wildfire at the landscape sdalgquestions remain regarding the relationship
between spectral changes caused by fire, fbieatetrics andprefire agents of chang&histhesis
addresses thesggiestiondy (1) comparingstructuralforest changesstimatedrom Light Detection
and Ranging (LIDAR) with spectral changes captured by Lanaisdt(2) exploring the effezbf an
antecedenmountain pine beetldgndroctonus ponderosalPB) outbreakand forestreatment®on
subsequent fire effect¥hestrongest correlationsere observetietween LiDARestimated change
in canopy cover (dCC) and spectral indices incorporating the shortwave infrared band. Compared to
areas experiencing no pfiee agentof changedCC was higher in prire MPB and lower in prdire
treatmentsThese results demonstrake utility of multi-temporal LiDARto measure fire effects and

the importance of antecedent MPB and fotesitment®n subsequenwildfire severity
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ThesisIntroduction

Mapping wildfire effects is critically important. Followingvaldfire, maragers and scientists
seek to understand rehabilitation degHessburg et al., 2015; Turner, Hargrove, Gardner, & Romme,
1994)and predict trends in ecological recovéBansler & Mckenzie, 2014; Eidenshink et al., 2007;
Miller, Safford, Crimmins, & Thode, 2009%econdaryire effects such as flooding and erosion,
provide an urgent need to identifyrégk areas using these mgpoody, Martin, Haire, & Kinner,
2008; Robichaud, Lewis, Brown, & Ashmun, 2008hd & the broader scaléire effects mapping is
used to understand how climate change is affecting forest carbon dgtingrd et al., 2002; Goetz,
Mack, Gurney, Randerson, & Houghton, 2007; Hicke et al., 2003; Kashian, Romme, Tinker, Turner,
& Ryan, 2006; Romme et.a2011) All of these tasks are vitally importaaund likely to become
more so as climatic shiftowardlarger, more extreme wildfirasccur(Barbero, Abatzoglou, Larkin,
Kolden, & Stocks, 2015; Littell, McKenzie, Peters@n\Westerling, 2009; Westerling, Hidalgo,
Cayan, & Swetnam, 2006)

Remote sensinig the primary tooallowing managers and scientistautaderstandire effects
a thelandscape scalgentile et al., 2006)Early attempts to classifjre effectsusingpassive
sensors (i.e., Landsatgmonstrated thatandsat ThematiMapper (TM)band 7 (shortwave infrad:
2.082.35um)is particulaty sensitiveto lack of vegetation and/or moisture associated with a fire
(Jakubauskas, Lulla, & Mausel, 19%hite, Ryan, Key, & Running, 1996Jhis led to the
development of th&lormalized Burn RatigNBR; LopezGarcia & Caselles, 1991ywhich was used
for burned area delineatipanddelta NBR(ANBR; Key & Benson, 200@nd Relatie delta NBR
(RANBR; Miller & Thode, 2007)o measureariations in fire effect Theseindices havdbecome
ubiquitousin fire ecology researcfe.g.,Eidenshink et al., 2007; French et al., 2008; Lentile et al.,
2006; Zhu, Key, Ohlen, & Benson, 200Blowever, there areidespread concerns about the ability

for these indiceto accurately differentiateurned and unburned pixglsolden, Lutz, Key, Kane, &



van Wagtendonk, 2012; Sparks et al., 2CdrB)delineate severity classes without adequate ground
observationgKolden, Smith, & Abatzoglou, 2015Furthermore, without specifaorrelation to any
biometric measure of severitmanyresearcherare findingspectral indices alone to kaboptimal
metrics (Kolden et al., 2015; Morgan et al., 2014; Roy, Boschetti, & Smith, 2013; Roy, Basé&hett
Trigg, 2006; Smith et al., 2016)

Foreststructuralattributesderived from Light Detection and Ranging (LIDAR) data may
provide a viable alternative to spectral indices, by providingstimateof changes in vegetation
structureassociated with wildfire (Smith et al., 2014 iDAR is an active remote sensing method
that is growing in prominence among natural resource managers and sdientilsts, Evans, &

Smith, 2009) Sensors are how grounair-, and spacéased, although airbee LiDAR is
partiaularly well suited to landscape scale studieforested ecosystemBleasurements are made by
calculating the angle and distance between the sensor and target using a global positioning system and
the elapsed time for the light to make the rotnijfrom the sensor to the target and bddkRAR
canestimatestructuralattributes such as height, cover, height distribution of outer canopy surfaces,
vertical distribution of canopy material, volume, biomass, and gapgtdimak et al., 2009; Kane et
al., 2013; Lefsky, Cohen, Parker, & Harding, 20QPAR hasalsobeen successfully used to map
bark beetle effectBater, Wulder, White, & Coops, 2010; Brighticke, & Hudak, 2012and fuel
loads(Andersen, McGaughey, & Reutebuch, 2005; Seielstad & Queen,. 2008¢ greater attention
has been paid to characterizing fire fuel structure, only a few studies have used LiDAR to quantify
postfire effects(Bishop, Dietterick, White, & Mastin, 2014; Kane et al., 2013, 2014; Reddy et al.,
2015; Wang & Glenn, 2009; Wulder et al., 20@8)] even fewer have used paad posffire LIDAR
acquisitiongBishop et al., 2014; Reddy et al., 2015; Wang & Glenn, 2009; Wulder et al., 2009)
Repeat acquisition of LIDAR in 2009 and 2013, spatially coincident with the 2012 Pole

Creek fire in central Oregon along the eastern Cascades, providegua apportunity to



demonstrate the utility of multemporal LIiDAR to estimate fire effectBhis thesisutilizes thesalata
to explore theelationship betweemulti-temporal LIDARand conventional spectral remote sensing
of fire effects It also exhibis the @plication of multitemporal LiDAR to provide novel insights

the effect prdire agents of changeaveon subsequent fire effect8achof the chapters in this paper
corresponds with an objective.

The goal of chpter one waso explore the relddnships ofspectral indices calculated from
Landsat imagergnd changes in forest structure estimated from rtesttporal LIDAR. A secondary
theme of this chapter was the use of simultaneous autoregression, a spatially weighted regression
model, to improe performance bgroviding a proxy for other variables (i.e., geomorphic or climatic
process) not in the modgissling & Carl, 2007; Prichard & Kennedy, 2014; Wimberly, Cochrane,
Baer, & Pabst, 2009T his study include@1 spectral indices and42iDAR metrics as candate
variables, eliminatingoorly correlated combinationsgsulting in63 viable modelso evaluateBoth
ordinary least squares regression and simultaneous autoregression were applied to these pairs,
althoughmodel evaluationusgA k ai ke d s | nf o(AlGaAkaike ho74Bmowerdkeer i o0 n
spatial models were superior iaaghcase. LiDARestimated change in canopy co@€C)anda
multi-temporalr at i o of Landsatodés second shd™thadthe e i nfr al
highest correlatiofpseder’ = 0.85), followed by dNBR and dCC (psedo= 0.85) Correlation with
LiDAR metrics closer to the ground was not well detected by spectral intikegast studiest
wasobserved that Landsat band Triest sensitive to fire effec{Key & Benson, 2006; Miller &

Yool, 2002; van Wagtendonk, Root, & Key, 2004; White et al., 1;988)yever correlation with a
substantive severityetric (.e.,dCC)was also demonstratethis work sets the stage for future
opportunities to calibrate spectral indices to structural measures of change at larger scales

The goal of chapter two was éaplore the impact of prere agents of changej this case

mountain pine beetl@®endroctonus ponderosalPB) and timber harvesbn subsequent fire



caused change in canopy cover, estimateahiii-temporal LIDAR(dCC). This chapter usesPB
estimates of mortality occurring® years prior to ther and locations for timber harvest and
hazardous fuel reduction treatments conducted by the Deschutes National Forest between 1971 and
2009.Areasbeing affected bwll possible combinations of forest agents were identified and
evaluatedincluding (1) MPB followed by wildfire (MPB/Fire), (2) harvest followed by wildfire
(HARV/Fire), (3) a combination of forest harvest and MPB followed by F#&RV/MPB/Fire), (4)
wildfire having not been proceeded by either MPB or harvest-@ag, (5) MPB, (6)HARV, (7)
HARV/MPB, and (8) no préire agent (No Agent/No Firepre-fire MPB intensity harvestreatment
type, ancharvestreatment agevere also examinedResults indicate that MPB/Fire areas had higher
average dCC than Fuanly, and that dCC increased wiprefire MPB-mortality. Timber harveston
the other hand, appeared to reduce dCC compared torijreA relationship was observedth

dCC and treatment age, wittre most recent treatments experiencing the lod@€tL Treatment type
did not appear tbe as irportant. This method of measuring fire effects across the landscape is a
noteworthy improvement over studies limited to gost data only, as well as those using dNBR or
RdNBR withoutany kind of biometric validationT he findingsregardingharest treatmenareas
generally agree with previous reseafely.,Moghaddas & Craggs, 2007; Prichard, Peterson, &
Jacobson, 2010; Ritchie, Skinner, & Hamilton, 2007; Safford, Schmidt, & Carlson, 2009; Safford,
StevensMerriam, Meyer, & Latimer, 2012; Wimberly et al., 200Blpwever, there is still significant
uncertainty regarding the impact of MPBicke, Johnson, Hayes, & Preisler, 20H2)d thefinding

of increased burseverity contradicts recent studies conducted in the saméaaa, Woolley, &
Fitzgerald, 2016; Meigs, Zald, Campbell, Keeton, & Kennedy6R0Xhile additional researdh
needed b the topic of prefire agents of chang¢he use of muktemporal LIDAR demonstrates

considerable promise in the field of fire ecology.



Chapter 1. Multi-temporal LiDAR and Landsat Quantification of Fire Induced

Changes to Forest 8ucture

T. Ryan McCarley, Crystal A. Kolden, Nicole M. Vaillant, Andrew T. Hudak, Alistair M.S. Smith,
Brian M. Wing, Bryce Kellogg, Jason Kreitler

In reviewfor Remote Sensing of Environment

Abstract

Measuring posfire effects usingemote sensing is critical to an ecological understanding of
wildfire at the landscape scale. Predominantly thecomplishedvith multi-spectrakeflectance
data whichprovide frequent, synoptic observationspéctral changes the topmostEarthsurface
(often forest canopy), and groubdsed fieldsampleplots which are usually limited to pofite
observationsT his studyquantifeswildfire burn severity by comparing forest changes in biomass and
structure derived frormulti-temporalLight Detection and Ranging (LiDARacquisitionswith
spectral changes capturedthg Landsat Thematic Mapper (TM) atite Operational Land Imager
(OLI) sensorsDataacquired before and after the 2012 Pole Creek Fire in central Oregontaong t
eastern Cascade Motains werailtilized to assesghe potential forspectral indices to predict forest
structuralchangesThestrongestcorrelationsvere observedsinga LiDAR-derived estimate of
change in canopy covek simple ratio of shortwave infrared andar infraed light (d74), the delta
NormalizedBurn Ratio (ANBR), and the deltdormalizedV egetationndex (ANDVI)were the top
three predictor indice@seder® > 0.84 p < 0.01) For the most partorrelation betweepercentage
of LiDAR returnsin forest stratandspectral indicegcreased with strata height. Structural
measurements made closer to the groundstatistical measures of the point cloud such as mean,
standard deviation, and skewness werenatlt correlated Additionally, the results indicated &ithe

presence fopre-fire mountain pine beetleortality negativelyaffectedthe performance of the



Relative delta Normalized Burnato (RANBR)by producing significant outliers at the edge of the
disturbance where pif’e NBR was near zerd his studydemonstrates thapectral indices such as

d74, dNBR, and dNDVI are most sensitive to wildft@used structural changes akin to reduction in
canopycoverand less sensitive to fire effects near the surface in a forested ecosystem. These results
establisithe utility of spectral methods to predict changes in canopy structure under certain fire
regimes, as multiemporal LIDAR is not available everywhere.

Keywords:wildfire, eastern CascadedNBR, RANBR, canopy covamountain pine beetle

1. Intro duction

Remote sensingnageryplays a critical role in allowing managers and scientists to assess fire
effects across landscapgentile et al., 2006)Accurate detectionf wildfire severityis required to
evaluate potential ecological rehabilitation ne@disssburg et al., 2015; Turnetral., 1994) mitigate
secondary fire effect®(g, flooding and erosionMoody et al., 2008; Robichaud et al., 2009)
monitor anomalieand trends irecological recover{Cansler & Mckenzie, 2014; Eidenshink et al.,
2007; Miller, Safford, et al., 2009andquantify carbon balancéMeigs, Donato, Campbell, Martin,
& Law, 2009; Randerson, Chen, van der Werf, Rogers, & Morton, 2DBilyht of increasing
frequencyand size of wildfires under climate chari@arbero et al., 2015; Westerling et al., 2006)
and the inherent inteaannual variability of fire seasoii§loritz et al., 2012)the ability toaccurately
guantifylong-term carbon stockis necessaryor understandingpiosphereatmospheréeedbacksLi,
BondLamberty, & Levis, 2014)The longterm impacts of fire severity on forest carbon stocks and
processes have been characterized by aféwstudies including those focused on recovery in high
latitude ecosystem(€onard et al 2002; Goetz et al., 2007; Hicke et al., 2083)recovery
following the Yellowstone 1988 firq&ashian et al., 2006; Romme et al., 2014}ile considerable

advances have been made in relating observed changes associated effécist remote sensing



data(Disney et al., 2011; Lentile et al., 2006; Smith et al., 20b&ye are still knowledggapsand
several known sources of uncertaittigt canlead to extensive errewhenappliedto regional
assessmen{&olden et al., 2015; Roy et al., 2006; Smith et al., 2016)

Most notably, considerable disconnects exist between the savagtywhich are usually
produced from passive reflectance based imagery, and forest structural differences that are readily
related tachanges in aboveground carb@iten the produstdeveloped through the application of
spectral indices applied to dasamyopicallydescribedasii b u r n  saefreqrentlytoorly
definedterm(Keeley, 2009; Lentile et al., 2006jurthermore, these vaguely defined speatidex
basedbroducts are primarilytiked to subjectivand qualitativeobservation®f likely surface
changegLentile et al., 2006)hat in many cases argerred without prdire data and are oftamot
directly measurable by satellite sensiantile et al., 2009; Roy et al., 2008Yithoutthe
development ophysicallinkages between spectral data and quantitative measures of forest structure,
errors incarbonquantification will extrapolate through modetsppagatingerrors (Kolden et al.,

2015) A limited number of studies hawsught to relate radiometric dagdsto mechanistic changes

in vegetation following firegDisney et al., 2011; Smith et al., 2018jructural datasets such as those
derived from LiDAR data have considerable promise to be direafiyed to changes in vegetation
structure(Smith et al., 2014putsuch research is limitg@ishop et al., 2014; Wang & Glenn, 2009;
Wulder et al., 2009)

Severity delineatiofrom passive sensois accomplished through the analysis of individual
bandgWhite et al., 1996dr indices that incorporate properties of multiple bahéstile et al.,
2006;Smith et al., 2007)The most frequently used are thermalized Burn RatigNBR; Lopez
Garcia & Caselles, 1991deltaNBR (dNBR;Key & Benson, 2006 andRelativedelta NBR
(RANBR; Miller & Thode, 2007) ThedNBR and RANBRndicesarecalculatedby the Monitoring

Trends inBurn Severity (MTBS) projec{Eidenshink et al., 2007)hese data have subsequebiden



used to modgbyrogenicemissiongMeigs, Turner, Ritts, Yang, & Law, 201The most commonly
used fiéd measure of burn severity for calibrationtieésespectral indices is the Composite Burn
Index (CBI)(Key & Benson, 2006)dthough several limitations to this proto@k apparentirst,
because measurements are taken by ocular estimation they can be very siibg@ttigect al.,

2009; Morgan et al., 2014; Zhu et al., 2008¢cond, the CBI value is a comprehensive severity score
that includes all vertical strata including the subsurface, which correlates poorly to spectral
reflectance of the temost surfacéHudak et al., 2007)Third, because it is a comprehensive score,
CBI values are unitless and not directly representative of the ecological metrics that areavenst rel
to efforts to model and monitor fire eftscsuch atree mortality, canopy cover, oarbon
consumptionFinally, CBI protocol includes subjective reconstructive estimation ofifge

conditions in the podire environmen{i.e., no prefire dataareusually collected)yielding data of
guestionable accuracy that are extremely difficult, if not impossible, to egfitile et al., 2006;
Morgan et al., 2014; Smith et al., 2016; Zhu et al., 2006)

The difficulty in quantifying fireinduced change without pfi’e measurements extends
beyond the CBI protocol. There have been a few rare stutieevire burnethroughpermanent
monitoring plotghat were subsequentgsesse(Bishop et al., 2014; Cocke, Fulé, & Crouse, 2005;
Wimberly & Reilly, 2007) however, these studies have relied on small numbers ofédptats to
represent change over a large area. Hengn monitoring plots associated with the Forest Inventory
and Analysis (FIA) projediGillespie, 1999have burned with greater frequency in recent years, but
the set return intervals of FIA mean that several years may pass between the fire event and the post
fire re-visit, reducing the visibility andhagnitude of those effects when data collection does occur
(Whittier & Gray, 2016) The lack of prdire observations for the majority of field dataliaed to
calibrate burn severity spectral indices leads to inconsistency between the remote sensing measures,

which quantify change between pesd posffire acquisitions, and field calibration measures, which



are limited to posfire observationsMeasuing only the posffire environment cannot adequately
represent the effect ofréi, because it fails to captute magnitude of change&hether the observed
changes are in fact directly caused by the fire, or if another disturbance event is also wantribut
(Roy et al., 20135mith et al., 2016; Smith, Eitel, & Hudak, 2010)

The increasing acquisitidnequencyof airborneLight Detection and Rangin@iDAR) data
over relatively large areas offers a potential alternative mode of measuriimglficed ecological
change and dibrating reflectancéased spectral indices to improve the models that use-bated
products DiscretereturnLiDAR collectedat high spatial resolution can accuratelgasurdorest
height, percent canopy covend provide thredimensional canopy ght and density metrics
describing thevertical distribution of canopy material, aerodynamic rough(tdadak et al., 2009;
Lefsky et al., 2002)and gap siz€Hudak et al., 2009; Kane et al., 2018palyzed in concert with
field data, LIDAR returns can also heed to predidoreststrucure attributesuch as basal area,
volume, biomass, and leaf argtudak et al., 2009; Lefsky et al., 200R)DAR has been
successfully used to quantify the effects of insect outbreaks in f@Bedes et al., 2010; Bright et al.,
2012) prefire fuel loading(Andersen et al., 2005; Seielstad & Queen, 20&3) structural
measurements of the pdse environment(Bishop et al., 2014; Kane et al., 2013, 2014; Kwak et al.,
2010; Wulder et al., 2009\ cquisitions of highresoluion, compaable pre and posfire LiIDAR
data that provide measuréfwe-inducedvegetatiorchange have bedimited (Bishop et al., 2014;
Wang & Glenn, 2009; Wulder et al., 200Bjowever, nulti-temporal LIDAR is not a novel concept
and ha been widely applied to quantify other ecosystem properties such as snow {fhkham et
al., 2014)forest growthand harvest disturban¢dudak et al., 2012and change in biomass
resulting from a Gypsum mothymantria disparputbreak{Skowronski, Clark, Gallagher, Birdsey,

& Hom, 2014) among other applications.
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Only two studies talate have been able to spatially match prel posfire LIiDAR
acquisitions in order to objectively quantify firdexfts on forest structu@ishop et al., 2014;
Wulder et al., 2009)with additional studieby Wang & Glenn(2009)focused on shrubs in steppe
ecosystemandReddy et al(2015)in peatlands. Neither of thgior studiesn forest ecosystems
explicitly linked LiDAR-derived forest structure metrics to the spectral indices that are most
commonly used to assess forest burn sgvadross an entire fir®ishop et al. (2014assessed the
Normalized Differenced Vegetation Index (NDWn a small portion of a wildfire, whilé/ulder et
al. (2009)analyzed only a limited set of returnisiin a single LiDARrransectin order to model
metrics of fireinduced forest change from unitless spectral indices that are wtikished to
characterize burn severity and model emissions (e.g., dNBR and RANBR), there is a critical need for
additional sudies to be undertaken whereqmad posfire LIDAR overlap spatially.

One such opportunity arose following the 2012 Pole Creek Fire in Central Oregon, USA,
where posfire LIDAR was acquired spatially coincident wilprefire acquisition acrossnaentire
fire, featuring agradient of forest types. Thimarygoal of this study was tassess the accuracy of
spectral indices calculated from Landsat imagemredicing changes in forest structucalculated
from pre- and posffire LIDAR. A secondarybjective was t@assess the utility of spatial
autocorrelation for improving model predictive powathile some studiesave sought tamprove
model predictions of burn severity through irgibn of environmental da&t mismatched spatial
scaleqe.g.,Birch et al., 2015; Dillon et al., 20119imultaneos autaegressive modeling, a form of
spatially weighted regressiomas been shown to improve on repatially explicit regression models
(Cressie, 1993; Haining, 29; Lewis et al., 20115imultaneous autoregression incorposbe
spatial autocorrelatioim burn patterpproviding a proxy for other influential variables (i.e.,

geomorphic or climatic process) riotludedin the mode[Kissling & Carl, 2007; Prichard &
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Kennedy, 2014; Wimberly et al., 2009hese previous findings suggesinga spatially explicit

model would improve theelationship between LIDAR metrics and spectral indices.

2. Material and Methods
2.1.Study Aea

The study was carried out on the Pole Creek Fire, located along the €2esteade
Mountains in the Deschutes National Forest, approximately 30 kilometers wesivesttbf Bend,
Oregon (Fig. 11). Ignited by lightning on Septembef, 2012, the fire grew to 1800 hectares
before containment in mi@ctober. The fire burnedeoss a large elevational gradien20 to
2,100 meters) and wide variety of forest types, with dominant tree species including ponderosa pine
(Pinus ponderosalodgepole pineRinus contorty, mountain hemlockTsuga mertensianaand
grand/white fir lybrid (Abies gradis/Concolgr The mean July minimum and maximum temperatures
are 6.3 °C and 23.1 °C, and the mean January minimum and maximum temperat@é.€s’@rand
2.1 °C. In an averaggear,the area receives 1095 millimeters of precipitation,tip@s snow
(PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 6 September
2015).Mountain pine beetleDendroctonus ponderospeaused significant mortality throughout the
P. contortastands6-12 years before there (McCarley, Kolden, Vaillant, Hudak, and Smitbhapter

2, thisthesis)
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i l:l Pole Creek Fire

| Coverage of viable
‘pre- and post-fire
LiDAR and
Landsat imagery

10 L 1B
—:—Km

Flure 1.1 Locatlon of Pole Creek Fire (white outllne) in central Oregon and the overlap of viable
LIDAR and Landsat imagery (orange outline with crosshatch). Data overlaid on 2Qibhdla
Agricultural Imagery Program (NAIP) imagery.

2.2. DataPre-processing

Pre and posffire USGS Level 1 terraisorrected (L1T) Landsat TM and OLI scenes were
selected (Table.1) on the basis of phenological comparability, nonexistence of snolewa cover
over the burn areand maximizing the number of pixels for analysis. Baseith@criteria all prefire
scenes from 2012 were excluded because the scan line error on Landsatetibéethe number of
useable pixelsonsiderablyRemaining cagidate scenes were evaluated for best match based on
plant phenology and sun angle following best practiéé&ey (2006) All of the scene combinatien

hada fewpatches of snow at higher elevatipaseatingnterferencevith change analysis.liErefore,
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pixels containing snowvere excludednce the best phenological pair was determinedsiratar
reasons open water bodiggh seasonally variable levelgere also excluded, resulting in the
omission of 1.6% of the pixels within the fire perigretin order to prepare and standardize Landsat
scenes for mukdate comparison, band brightness values were transformed into refld€aanoder
& Markham, 2003)then atmospherically corrected tesatfacereflectance using the Cos(t) model
and Dark Object SubtractiqChavez, 1996)

Discrete, multireturn LiDAR data were acquired pand posffire by Watershed Sciences,
Inc. (Corvallis,OR) (Table 11) at a survey altitude of 900 meters above ground level with a 28° field
of view (x 14° from nadir) and at least 50% sldp. In eacltasethe vendor pogprocessed the
LiDAR data in order to ensure geometric accuracy and develapeterdigital terrain model.
Following delivery,pre- and posfire data were heightormalized by subtracting the terrain model
from the Li DAR point c¢cloud using the USDA Forest
(http://fforsys.cfr.washington.edu/fusion.html)efire LIDAR data were rgorojectedusing LAStools

(Isenburg, 2013from state plane into UTM to match the péist LIDAR and Landsadlata.



Table 1.1:Data Acquisition Parameters
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Date Sensor Type Resolution
Pre- Fire LIDAR  Octdber 711, 2009 Leica ALS50 Average 8 pulses/m
Pre- Fire Multi - July 23, 2011 Landsat5 TM Bands 15 and 7, 3@n

spectral Imagé

Post Fire Multi - June 10, 2013
spectral Imagé

PostFire October 811, 2013
LiDAR

Landsat 8 OLY

Leica ALS50

Band 6 (thermal), 12t

Bands 17 and 9, 3@n
Bands 10 and 1tHermal), 106m
Band 8 (panchromatic), s

Average 8 pulses/m

2 Scene located at Worldwide Reface System 2: Path 45, Row 2Pespite the differences in
spectral channel and bit size between Landsandthe two previous missions (Landsat 5 and 7),
there is no discernable difference in spectral signature of burned syKactsias & Pleniou, 2015)

2.3. Spectralidices

Fifteen spectral indices were selected based on their use in other studies that mapped fire

effects. These, as well as individual Landsat bands converteduofate reflectanceere used as

predictor variables for LiDARJerived structure metrics in the analysis. Indices were calculated per

equations provideth seminal papers (Table2). Following practices b¥ey (2006)andCansler &

McKenzie(2012) an offset valuavas appliedhat accounted for phenological differences between

the pre postfire images. Thisequiredidentifying a few homogenousrested areas outside the fire

perimeter for reference and comimgtthe mean value for each spectral index in those areas.

Understanding that the reference areas should have a differenced index valueaofjustrments

were made tall the pixel values by adding or subtracting the value of the reference mean



Table 1.2: Remotely Sensed Spectral Predictors
ChangeSpectral Index Derivation Key Reference

pLandsat BandsHlue (dB), Green(dG), Red(dR), - -
Near InfrareddNIR), Shortwave Infrared 1
(dSWIR1), and Shortwave Infrared(@8SWIR2))

gNormalized Burn RatigdNBR) ( MrRT S swir2) / ( §irRH) swir2) (Key & Benson, 2006
Relative ANBR(RANBR) dNBR/& (| NH/FO00 (Miller & Thode, 2007)
pNormalized Differenced Vegetation Ind&dNDVI) ( R0/ ( girtH ) (Rouse, Haas, Deerling, S¢hé&
Harlan, 1974)
goMid-Infrared BiSpectral IndeXdMIRBI) 1 Osyird 9 . Bugit2.0 (Trigg & Flasse, 2001,
gChar Soil IndeXdCSl) InR/ Y swirt (Smith et al., 2007
gSoil Adjusted Vegetation IndgxISAVI) ( R D(A+L) 7 ( dwir) (Huete, 1988)
Tasseled Cap Brightne@$TCB), Greennes@TCG), (g U9( ¢ ON( & U wr* UN (Crist, 1985; Kauth & Thomas, 197t
and WetnesgdTCW) o Cdwre UD( dwire® U)
gThe first threePrinciple Componest(dPC1, dPC2, (dB*U) + (dG*U) + (dR*U + (dNIR*U) + (Patterson & Yool, 1998
dPC3) (dSWIR1*)) + (dSWIR2*U)
@ Normalized Dif {dedbDW)nc e d ( R swirD) / ( §irRT bwirD) (Gao, 1996)
@ Band 74 Rati o } swir2! I NIR (Kushla & Ripple, 1998)
@ Band /'3 Rati o J swire! 1 swirt (Epting, Verbyla, & Sorbel, 2005

All Spectral Indces analyzed as the difference from-pre pcst-fire; ] surdtace r efl g avheserxis giverf by the lbaadeat

sensor. L=soil constant setto 0. = coef fi ci ents for |Gristl®6) Ut r=a rcsofed rf macti ienrnt,s o eofri npere

analysis were derived from pixels within the fire using an unstandardized principle component transform (based on cuatiignaed are
defined in theappendix

}

1)
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2.4. LIDAR Metrics

The metrics used in this study (Talll8) were selected based on use in other forestry
applicationge.g., Hudak et al., 2012; Wing et al., 201@)mparability with fireeffecis strata
assesseih CBI (Key & Benson, 2006)and theoretical sensitivity to fire effects. Basedhmn
recommended definition of surface fuel Bsown, Oberhau, & Johnston (1988)is study used 1.8
meterthreshold for calculating canopy cov@bove 1.8 meteyand mean surface fuel heigbhelow
1.8 meters.

The LiDAR point cloudwas binnedo a30-meter grid designed to match the layout of the
Landsat pixelsand produced a series of descriptive statistics for each cell using the GridMetrics tool
in FUSION. Selected statistica/ere then convertelh a raster grid using the CSV2Grid functimmd
the raster calculator in ArcGMas usedo compute the differenced metria all cases, both an

absolute change (pfepost) and a relative change ((jorpost) / pre) value was calculated



Table 1.3:LiDAR Metrics of Forest Structure

LiDAR Me tric

Int erpretation

prei post
Mean of returns O 0.15

m

goMean vegetation heiglftiMHT)

Standard deviation of r et ur r gVegetation height standard deviati@ED)

Skewness value of retur
Percent of returns <1 m

Percent of returns O 1
Percent of returns > 5
Percentof returns>8mdn O 20 m

Percent of returns > 20 m
Mean height of returns
Percent of returns > 1.8 m
Using vegetation heights: (meamin) / (maxi min)

ns O

m andc
m andc

O 1. ¢

gVegetation height skewne&dSKW)

goPercent retursherbs, low shrubs, and debdd m(dS1)
goPercent returns tall shrubs and treés51m (dS2)
gPercent returns tall shrubs / intermediate t(d&3)
gPercent returns intermediate trees / upper ca(d®¥)
gPercent returns upper cangjoys5)

gpMean surface fuel heigidMSFH)

gpPercentCanopy Cove(dCC)

gpCanopy Relief RatigdCRR)

Mean vegetation height * canopy cover gCanopy DensitydCD)

(pre - post) / pre
Mean of returns O 0.15 m Rel ative o MearfRdMHIget ati on hei ght
Standard deviationofet urns O 0. 15 m Rel ative o Vegetati oRdSD)ei ght st an
Skewness value of returns O Relative @ Veget@®@ISKWn height skew
Percent of returns <1 m Rel at i ve ansPReas, bw shitubs,ramdtdebri4 m(RdS1)
Perent of returns O 1 m and CRelative @ Percent riestmfRd®2s tal |l s
Percent of returns > 5 m ancRelative @ Percent retufRd3) tall s
Percent of returns > 8 m ancRel at i ve tunmshtermadiatetreesr/ @wper can(RyS4)
Percent of returns > 20 m Rel ative o PercenRdSS eturns wupper
Mean height of returns O 1.¢Relative @ Mean(RdMsFH) ace fuel heig
Percent of returns > 1.8 m Re | a tPerceaCagopy Cove(RdACC)
Using vegetation heights: (meamin) / (maxi min) Rel ative o Ca(dgrRR) Rel i ef Rati o
Mean vegetation height * canopy cover Rel ative o Q@@ py Density

LT
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2.5. Model @mparison

Due to the high number of insignificant modelgrelimnary screeningvas conductedf all
combination pairs of spectral indices and LiDAR metrics uaiRge a r soorelabias. Porly
correlated pairs (less than absolute value of 0.5) veeeliminated from further evaluation. The
remaining pairs were asseslusingpairwiseordinary least squares (OLS) regressiand comparing
their rsquared values.

All statisticswas computech thesoftware RIR Development Core Team, 2034)d applied

the simultaneous autoregressive magshg thespde@packageBivand, 2002) following the

equation:

Y = Xb(Y X bW U
where Y is the dependent variable, X is the expl
the autoregressive coefficient, W is the rstandardized matrix of spatial weightssnd U i s t he

uncorrelated error terfCressie, 1993; Haining, 1990)he spatial weights matrixas déinedto

give weight topixelswithin a predefined neighborhooldased on the inverse of the distancenfro
focal center to the center of neighboring pixdlsese valuewerethenrow-standardizedgiving the
neighboringpixels a total summed weight ofie and all other pixels a weight oéra Following the
recommendation dfissling & Carl (2008)and practice obther widfire studies incqrorating
simultaneous autoregressi(Meigs et al., 2016; Prichard & Kennedy, 201#gighborhood pixels
were definedas those centered with@® meterdecausehat distanceninimizedAk ai ke 6 s
Information Criterion(AIC; Akaike, 1974)and residual spatial autocorrelation over other possible
neighborhod distancesDue to the large number of observatiahis study used Chebyshev sparse
matrix approach that estimates the autoregressive coeffiaitierr than calculating it directly from

eigenvaluegPace& LeSage, 2004)This methodallowed application ofhe modeto a much larger
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area than would be computationally possible otherwise, avoiding having to subsample the data as
others havéLewis et al., 2011; Wimberly et al., 2009)

The outputs of each model pair were compared in oodiesst the hypothesis thise
spatially explicit modeWould provide a superior model to OLI3sing R, thesimultaneous
autoregressioproduces &agelkerkepseuder-squaredNagelkerke, 1991 )which is not directly
compaable to an OLS-squared. TiereforeAlC wasusedto show improvement;dwever the
pseuder-squared value was an acceptahkthodto comparecorrelations between spectral indices

and LiDAR metrics.

3. Results

R-squared values fahe 63 viable OLS regression modelgere plottedn a matrixto
examine the magnitude and quality of thatiehships betweespectral indices and LIiDAR metrics
(Fig. 1.2). The besbbseved relationship was between d@dd dCC (r= 0.63), followed byd75and
dCC (f = 0.62), dSWIR2 and dCC%x 0.52), and dMIRBI and RACC?@ 0.52). For dSWIR?2,
dNBR, dNDVI, dTCW,dPC1,d74andd75 the highest-squared values corresponded to dEG
dB, dG, dSAVI, and dNDWI, dCC was the only LIDAR metric that pdgseliminary screening.

The worst rsquared value for a model not eliminated was betwe@land RASZr? = 0.25. Al
models were statistically significant, even poorly performing ones due to the extremely large sample
size (n =117,520).

This study corparedAIC values forthe spatially expliciend OLS models for each of the 63
viable pairs (Figl.3). For all pairs the AIC value was lowasing simultaneous autoregression
indicate model improvement. The biggest decrease in AIC was observe&i¥gt and dCC, while
the smallest was between d75 and RdS2. Across spectral indices dCC and dS4 saw the greatest

benefit fromsimultaneous autoregressid®dS2 was the least improved LIiDAR metric for all spectral
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indices.Psudor-square valuewerealso generatéand plottedor each of the model pairs (Fig4).

With spatial autocorrelation accounting for the influence of unknown predictor variables, the best
observed relationg was still d74 and dCC (psedo= 0.86), followed by dNBR and dCC (psedo

= 0.8), dNDVI and dCC (psedd = 0.84) dSWIR2 and dCC (pseed= 0.84) dPC1 and dCC

(pseder® = 0.84), ANDWI and dCC (psedb= 0.84), and dTCG and dCC (pseds 0.84) were all

close behinddCC was the best predicted LIiDAR metrics for all spectrat@sfpseder’ ranging

from 0.79 to 0.86)followed by dS4, RACC, and dS3. RdS2 uniformly had the weakest correlations to

all spectral indices (psedbranging from 0.450 0.47).

m
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RdCD

ds4

dS3

dS2

RdS2

dMSFH

RAMSFH

dB
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dR
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Figure 1.2: Comparison of RSquared values for pairwise ordinary lesgtiares (OLS) regression
between LiDAR metrics and spectral indicesoMi el s wi t h a Pearsonds Corre
value of 0.5omitted (preliminary screeninghcronyms defined in Table 1.2 and 1.3.
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Figure 1.3: Improvement over ordinary leastjuares (OLS) models through the use of simultaneous
autoregressive (SAR) modelling measured by Akaike information criterion (AIC) values (positive
indicates improvement, zero no change, and negative suggestsimgysblo d el s wi t h a
Correlationbelow an absolute value of Odmitted (preliminary screeningAcronyms defined in
Table 1.2 and 1.3.
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Figure 1.4: Comparison of pseudesquared values fosimultaneous autoregressive (SAR)
modellingbetween LIDAR metrics and spectral indices; modeist h a Pear sonds
an absolute value of Odmitted (preliminary screeninghcronyms defined in Table 1.2 and 1.3.

4. Discussion
4.1. Canopy Gver

The esultssuggest thatiDAR estimatedchange in canopy cover is the primary biophysica
fire effect detected by spectral remote senséimcethat metricproduced the best correlation with all
spectral indicesThe finding that changes in the tostsurface is more detectable by spectral
remote sensing than any other structural changapgorted byther studiesUsing fires across the

western U.S.Hudak et al. (2007)emonstrated thatrimarily the surface cover fractions rather than

Corr
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understory vegetation or soil effects influenced spectral respiéiefe estimates of change in canopy
cover using the Forest Vegetation SimuldfvS; Dixon, 2002)also have an establishealationship
with RANBR in California ecosyste(Miller & Quayle, 2015; Miller, Knapp, et al., 200%bsolute
change in canopy cover derived from a LiDAR Itrensectvas also the best correlatetricto
postfire NBR, dNBR, and RANBRsing all data points in a boreal forest ecosysi&fulder et al.,
2009)

Usingsimultaneous autoregressjdhne indices that had the best relationshig@& were d74
and dNBR, botlof which usete SWIR2 and NIR bandsThe individual SWIR2 band had a strong
relationship with dCC, while dNIRvas a strong predictor onlyhen used in combination with other
bands (i..d74, dNBR, dNDVI).Many other studies have indicated that SWig&®l NIRprovidethe
best correlation with field measurements incorporating fire effects on all eyt Benson, 2006;
Miller & Yool, 2002; van Wagtendonét al., 2004; White et al., 199@ased orthesefindings,

SWIR2 appears to be the masnsitiveband for detecting firnduced changes for canopy cover.

4.2 LiDAR Metrics

The change in percent of returns below 1 meter (dS1) appeared to be irflpenwily by
topography, either because of fire behavior in this stratuas an artifactrom height normalization
of the LIiDAR data. In either case, dS1 or RdS1 were not well correlated with speditrat Mean
surface fuel heights (AMSFH and RdM$Rwere also not well correlated, but deleala distinct
trend At low levels of spectral change, dMSFH and RAMSFH varied considetalilgt hgher
levels of spectral changkeyexhibited decreasing fuel heights consistent withected
consumptionThe low correlation and extreme variation at low severity levels might suggest that

spectral remote sensing is not fully able to detect changes in the undesstorganopy is intact.
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Moving up the strata to change in percent returBsvieters (dS2) angp through percent of
returns from 58 meters (dS3) and percent of returns fre@08neters (dS4), correlations with
spectra gradually improve@ther tharchanges in canopy covetGC and RACY; the best correlated
LiDAR metrics were dS3ral dS4. The modémprovementobserved with increasirtgight strata
highlightthe difficulty of measuring reflectance values anywhere but thentugksurface. The
exception to this trend was the poor correlation observed between change in percerdlyeta 29
metes (dS5) and the spectral indices. WHiB86 of pixels hagre- and posfiire LIDAR returns
above 20 meters, theyere usually few in numbehaving a median value of only8% of all returns
in the pixels having returns in that strat@erefore, thepoorcorrelation between dS5 or RdS5 and
any of the spectral indices mighearesult ofthe dearth of vegetation in most areathate strata
(largely treetops) and the consequeritifilence from spectral reflectance in the stratum below
Models using reitive delta LIDAR metrics alsadd lowerpseuder-squaredralues than their
absolute delta counterparts did, indicating that for this type of forested ecosystem absolute measures
of change were easier to detect using spectral remote sensing. In a simdilaVailder et al. (2009)
tested postire NBR, dNBR, and RANBR against absolute and relative chargjeuicture derived
from a LiDAR transect Their work does not indicate significant differences in model quality between
absolute and relative change, but their sample size was considerably smab&j) than ours and in
anotablydifferent ecosystenfll of therelative delta LIDAR metrictested also tended to emphasize
change opposite from fire effeaisie tooutliers experiencing extremely negative valUd®relative
delta metris could not exceed a value of pmhich representsomplete change fro prefire
condition. However, there was no theoretical limit in the opposite direction, so in places where post
fire values were much higher than {fire values, wildly negative values resdt
Classic stitisticalmetrics derived from theiDAR point doud (i.e., mean height, standard

deviation, and skewness) did not perform well and were removed during preliminary screening.
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RdCD, which isafunction of mean height and canopy cover, was included in the analysis and
modelled with dMIRBI and d75. Howevehe pseuda-squared values were among the lowest for
the spatially explicitmode| indicating little evidence of a relationship between classic statistical

measurements of the point cloud and spectral change.

4.3 dNBR and RANBR

Because of their widespad use and adoption into MTBS, a discussion of dNBR and RANBR
is warranted. Irthis study, dNBR outperformed RANBR across all structural metrics. This was
foremost the result of two distinctly different relationshipservedetween RABR and the LiDAR
metrics (Fig.1.5). Further investigation revealed that in areas wherdirg&BR was near zero and
postfire NBR was negativehe RANBR equation produced unreasonably high values that do not fit
into a linear or notinear modelMcCarley et al. Chaper 2, this thesispetermined that these areas
corresponded twhereprefire mountain pine beetimortality had occurredThese resultsot only
contradict studies thauggesRANBR would perform better in forests where-fire disturbance has
resultedn heterogeneusvegetation covefMiller & Thode, 2007) butalsoraisequestiors regarding
recent studiethat have assessed the impact of mountain pine beetle outbreaks on subsequent fire
severity utilizing RANBR as a proxy for burn seve(Meigs et al., 2016; Prichard & Kennedy,

2014)
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Figure 1.5: Scatterplot of the Relative delta Normalized Burn Ratio
(RINBR) ancchange in percent canopy cover measured by LIDAR

For thisfire, AINBR wasslightly outpaformed in the prediction of aif the LIDAR metrics
except dMSFH and RdMSFbl d74, a simple ratio utilizing the saribandsat bands as dNBR
Nonethelesssignificant evidencewas notobservedndicatingd74would make a clearlguperior
index. Furthermore, thase of thenormalized form mayproduceresultsthat are more consistent
whencomparing firescross regionand with differing levels of scene illuminatigey & Benson,
2006) dNDVI and dNBR performedimilarly when compared with dCC, andarrored each othen
comparison with thetber LIDAR metrics Hudak et al. (2007also reported giilarities in
performancédetween postire NDVI and NBR when predicting field measures of fire effects,

although their study indicated weaKalthough not significantlyyalues of dNDVI. Theseresults
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suggest that dNDVI may be useful when Shortwave lefféSWIR) data are not availablbut the

strong correlationfound withSWIR2suggest that dNBR islgetter burn severitindex.

4.4. Spectralndices

SWIR2was the individual band with the best relationship to structural change. dCC was
weaklycorrelaed to dB, dG, and dR better relationship witdNIR or dR and dCQwvas expected
given the sensitivity of these banddite-inducedchanges in vegetatid€huvieco, Martin, &
Palacios, 2002; Rogan & Yool, 200However the poor relationship with dNIR consistent with
Smith et al. (2009)who demonstrated that near infrared reflectance was insensitivean LiDAR
plot height.Althougha strongcorrelationwas not observebletween dNIR or dR, dNDVI was a good
indicator of LIDAR metrics, particularly change in canopy cover.

While all of the spectral indices tested produced better correlations with dCC thandrRdCC,
wasmost suited to predicating relative measures of change. One limitation to this conclusabn is t
no relative spectral indices were used other than RANBR (which was eliminated from analysis due to
the extreme values produced in some areas, as noted above). While the use of other relative indices
may provide better relationships to relative LiDARtrws, evidencavas not observesuggeshg

that hey would outperform the relationships observed by this study

4.5.Simultaneous Autoregressivtodel

All models were improved by the usesifultaneous autoregressja@upporting its value for
landscapassessment of fire effedgleigs et al., 2016; Prichard & Kennedy, 2014; Wimberly et al.,
2009) The greatest improvement in AlZasfor dCC,which was already the begtedicted
structural change measuRyior attempts to wdel burn severity across landscapes and understand

drivers of burn severity have found topography to be the strongest predictor of burn ¢Birefityet
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al., 2015; Dillon et al., 2011However, these studies note the limitations of trying to predict burn
severity at 3@mete spatial resolution utilizing predictor variables such as climate and weather, which
are only available at coarser spatial resolutidhss suggestthat spectral indices using a

simultaneous autoregressivedel might be the best proxy for specific bigpical measures of

change (i.e., change in canopy coyes it allows foconsideratiorof additional explanatory
environmental variabldenown to contribute to fire behavior such as climate, topography, and

vegetationwithout requiringthatthese varibales bencluded inthe models(Kissling & Carl, 2007)

4.6. Future Work

One obvious limitations that this studyvas conducted on a single fire, thus the potential for
these models tbe applied regionally or globally is uncertain. Nonetheldsgprimary objective was
not to establish a universal model between spectral remote sensing and structural change, but to
validate the utility of Landsat spectral change indices by explotie@pportunity afforded by the
availability of pre and posfire LIDAR collections. LIDAR provides a physical measure of
vegetation structure change that can be binned at a resolution to commensurate with Tiaedsat.
correlations observed suggest thatHar studyis warrantedn other vegetation types, bag
acquisition of LIDAR data increases, more-med posffire datasetsvill be availableto replicate
this validation of Landsat sensderived spectral indices of burn severithe need taefine
ecosystenspecificmodelsthat predict specific firinduced forest structural change metacs
regionally significant scatds documentedKolden et al., 2015)ut & long as LIiDAR remains caost
prohibitive, a robust spectral proxy dexd/from freely available Landsat data can provide effective
measures of biophysical change that managers and scientists need.

In this study, all LIDAR poins were analyzedegardless of other attributes. However,

recently other studies have introducedbasibility of separating live and dead LiDAR returns using
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intensity valuegKim et al., 2009; Wing, Ritchie, Boston, Cohen, & Olsen, 20TBjs analysis may
enhance future models since change in live canopy cover would likely be better correlated to spectral
change.

LiDAR alsooffers the opportunity to derive useful data such ambss, basal area, or leaf
area index in places where field calibration sites are availdbigak et al., 2009; Lefsky et al.,

2002) The relationship between spectral data and these measurements may offer insights that
structural metrics cannot. Given the importance of itely modelling carbon emissions, LIDAR
derived measures of change in biomass may prove critical in continuing to evaluate the ability for
spectral remote sensing to measure emissions and be scalable regionally and globally.

Finally, the issues observedth RANBR inareas experiencing pfige mountain pine beetle
mortality suggest a need to explore the effect offipeedisturbance on the ability to accurately model
fire effects across a mosaitforest historiesWhile numerous studies haggaminedhe
relaionship between mountain pine beettedburnseverity(e.g., Agqe et al., 2016; Harvey, Donato,
& Turner, 2014; Meigs et al., 201,6)one have addressed this issue at the landscape scale using
measures of severity other than reflectance. The availability oapdepostire LIDAR presens a
rareopportunity to undestand the effect ahountain pine beetlen subsequent structural change

cause by wildfire.

5. Conclusions

This work helps addresscritical gap in understanding the relationship between biophysical
fire effects and spectral remote sensing by usinlii-temporal LIDAR across aentire fireto
measurdire-inducedstructure changé&.he use of LiDARbypasseshe primary difficulty with
comparing multtemporal spectral data to field measurersenhich is the lack of prdire field

observationslin this analysis, certain spectral indices, most notablp&, successfully detected
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change in canopy covekccurate detection of structural change in lower forest strata not
observedsuggestinghat spectral remote sensing is primarily limited to detedtiegnduced

changes in the temostsurface. This finding is significant given the current use of reflectance data to
evaluate postire habitat,secondary fire effects (i.e., flooding and erosion), comprehensive severity
ratings, and carbon emissiorss LIDAR coverage increases spatially and temporally, there will be
opportunities tovalidatereflectancebased spectral indices to structural measures of climmyed

from LIiDAR with high confidence at a commensurate scale
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Chapter 2: Landscapescde Quantification of Fire Effects Following Mountain

Pine BeetleEpidemic and Timber Harvest

T. Ryan McCarley, Crystal A. Kolden, Nicole M. Vailla#ndrew T. Hudk, Alistair M.S. Smith

In preparation foForest Ecology and Management

Abstract

Across the wdern United States, bark beetles, timber harvest, and wildfire are three primary
drivers of tree mortality and carbon balance. While these agents of forest change frequently overlap
spatially, uncertainty remains regarding their interactions and impactisutarly the influence of
insect outbreaks on subsequent fire effeltguisition of pre and posffire Light Detection and
Ranging (LIDAR) data otthe 2012 Pole Creek Fire in central Oregoovided a uniquepportunity
to isolate quantitative fire ffcts from other agents of change across an entire wildtfiis.study
characterizethe influence of prdéire MPB andharvestisturbaneson LiDAR-estimated change in
canopy coverConsistent with the literatura,lower reduction of estimated canopyeowas
observedor areas wherémber harvesbccurred prdire. However, in contrast to several recent
studies in the same regiangreater loss of forest canopias observeith areas experiencing pfiee
MPB. Notably, tis trend was observed even wteccounting for heterogeneity in giee canopy
cover.Harvest teatment type was not as importantia® sincetreatment, andansistent with the
literature theestimated reduction in canopy cover waserved to bgreater in older stands.
However theseresults suggeshatfurther research igritically needed to understand the complexity
of MPB, timberharvestandwildfire interactions.

Keywords:wildfire, LIDAR, canopy cover, eastern Cascades, fuel treatments
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1. Introduction

Climate change ifacilitating largescale ecological disturbance, includpgtentialincreass
in larger, morentensewildfires (Barbero et al., 2015; Littell et al., 2009; Westerling et al., 2606)
bark beetle outbeks that have reached levelgprecedentefbr thepreviousl25 yeargRaffa et al.,
2008) When considered along with timber harvest, these agents of forest change represat three
themost significant drivers of tree mortality across the western United $ittitk®, Meddens, &
Kolden, 2015) Bark beetle epidemics preceding wildfire have been hypothesized to impact both
wildfire severity and carbon emissions through alteration ofipgduel loading(Hicke et al., 2012;
Hicke, Meddens, Allen, & Kolden, 2013; Meigs et al., 2009nber management activities,
including fuel treatments, have been shown to strongly influence subsequent wildfire effects,
primarily by reduing fire intensity(Moghaddas & Craggs, 2007; Pollet & Omi, 2002; Prichard et al.,
2010; S#ord et al., 2009, 2012)he intersection of these events is inevitable, so understanding the
conseqguences and uncertainties of their combmepdctsis criticaly relevant to forest managers
While there has been extensive efforts made to understaméhtividual agents acting over
relatively small portions of a fire have influencatbsequertire effects, there is a considerable
knowledge gap concerning how agents of change interact over longer tepgyad and across
largerares.

Fire effectsare commonly referrestasfi f i r Abudrd severity which although sometimes
used interchangeably, are usually defined by the temporal scale of analysis, with fire severity
referring only to immediate effectkentile et al., 2006)Both thesderns arenotoriously ambiguous,
having been used to describe a rangspetific vegetation and soil effects or used more broadly
without linkage to quantitative physical proces@éseley, 2009; Lentile et al., 200@everity is

frequentlymeasured at the landscape scale using spectral indices derived from passive spaceborne
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remote sensing platfornfsentile et al., 2006)The delta Normalized Burn RafidNBR; Key and
Benson, 2006; Lope@arcia and Caselles, 19%nd the Relative ANBRRANBR; Miller and Thode,
2007) are the most widely used spectral indicethe USA primarily because dNBR and RANBR
raster products are distributed by the Monitoring Trends in Burn Severity (MTBS) projectfiosall
fires greater tha@02 hectares in the east, and 404 hectard® wes{Eidenshink et al., 2007)
Empirical relationships between these products and fire effects on the ground are established using
specific hometric fire effectge.g., Hudak et al., 2007; Miller and Quayle, 20a53omprehensive,
albeit highly subjective sampling protos@uch athe Composite Burn Indg(CBI; Key and Benson,
2006)or Geometrically Structured CBGeoCBI;De Santis & Chuvieco, 2009%lowever,CBI has

not performed well across all ecosystdiiasischke et al., 2008nd scdNBR and RANBR, which
were originally developed through empirical correlation with CBI,odiren appliedwvithout field
validation(Baker, 2015; Meigs et al., 201 éhtroducing significant uncertainty into what biological
component or functionality is actually being measyiealden et al., 2015)Even when spectral

indices are correlated to quantitative field measergs) the vast majority of studies lack-fire
observations and instead rely upon estimation of théingreonditions, thus failing to objectively
capture the true magnitude of chaifBey et al., 2013; Smith et al., 2016, 2010})s also difficult to
address landscape fire effects using field measurements alone, as many wildfiresracgédrareas

with difficult terrain and few access roads. This limits field samples to parts of the fire that are safely
accessibléCansler & McKenzie, 2012; Hoy, French, Turetsky, Trigg, & Kasischke, 2008; Hudak et
al., 2007; Key & Benson, 2006naking it very difficult to control for only the agents of change in an
experimentaframework and potentiallgausing a source tfas.Furthermore, whilsuch studies

may be able to capture the variability of pbist effects as indicated from the spectral data (e.g.,
Landsat) in the accessible sampled ateapbserved variatian the spectraindexmay not be the

best judge of the true surface variability.
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Although recent studies have explored the effects of antecedent bark beetle outbreaks on burn
severity, there remain significant limitatiomsunderstandinghis interactionMog have only
analyzed a limited number of groubdsed observations and have not demonstrated the scaling up of
these observations and/or their relationship to remathged indice§Agne et al., 2016; Harvest
al.,, 2014,2014%; Schoennagel, Veblen, Negron, & Smith, 2012; $ihRomme, Griffin, & Turner,
2011) Studies analyzing spectral data across landscapes have lacked empirical relationships between
spectral reflectance and specific biometric fire efféBtgler, Kulakowski, & Veblen, 2005;
Kulakowski & Veblen, 2007; Meigs et al., 2016y validated reflectance using only CiBond, Lee,
Bradley, & Hanson2009; Prichard & Kennedy, 2014)jable2.1 synthesizes current literature
examining the effect of bark beetles on burn severity, with specific attention to location, time since
outbreak, and their definition of severity. There are many more studiesfietihdata to model
severity(e.g., Page and Jenkins, 2007; Schoennagel et al., 2012; Simard et al.b@hireview

was limitedto studiegnakingobservatios of wildfire effects.
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Table 2.1: Recentresearch examining the effect of bark begttkiced tree mortalitgn burn

severity.
Reference Location Time since Deflnl'qon of Burn Burn Severity
Outbreak Severity Response
Turner et al Greater Observational assessment| Decreased then
" | Yellowstone 5-17 years | soil and vegetationT{rner | increased at higher
1999 . .
Ecosystem et al. Table 1) beetle intensity
Bigler etal., Colorado ~60 years | dNBR Increased
2005
Kulakowski 0-5 vears
and Veblen, Colorado y dNBR No effect
2007
Bond et al., Southern
2009 California 0-1 years RANBR No effect
Kulakowski Colorado and
and Jarvis, ) Variade Undefined No effect
2011 Wyoming
Greater .| Char height/bole scorch, | Variable, increased
(ZIS?LZ)e yetal, Yellowstone giSy eggsr’s treemortality, depth and (0-3 years), no
Ecosystem y char of posfire litter effect (315 years)
Northern .| Char height/bole scorch, .
(Zlgiz\gc)eyet al, Rocky gig eggsr’s treemortality, depth and Zf?ggtble, mostly no
Mountains y char of posfire litter
Prichardand .
Kennedy, 2014 Washington 0-3 years RANBR Increased
CBI, char height, basal are
Agne et al., . | killed, crown consumed,
2016 Oregon 8-15 years depth and kear of posfire Decreased
litter
Meigs et al., Washington .
2016 andOregon Variable RANBR Decreased
McCarley et al. ! | LIDAR -estimated change i
(This Study Oregon 6-12 years canopy cover Increased

* Differences in reported time since outbreak for the same fire (Pole Creek) wereAlyreetet al.

(2016) using the yearfcepidemic initiation at their study plots (Michelle Agne, Oregon State

University, Corvallis, Oregon, USA, personal communication), while McCarley eTlais Study
reported time since douteakusing the pealperiod of mortality across th&iDAR acquistion area

(Appendix C).

Studies examining relationships between antecedent foeasinentand burn severity have

similar limitations. Many are based on theoretical fire behd¥iomey, 2001; Stephens &

Moghaddas, 2005; Stephens et al., 2009; van Wagtend®®&), While those observing fire effects

in the fieldare based oa finite number of sampling plots rather than landscape sgatmtic
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measuremestKennedy & Johnson, 2014; Moghaddas & Craggs, 2007; Pollet & Omi, 2002;
Prichard et al., 2010; Ritchie et al., 2007; Safford et al., 2009, 2012; Strom & Fulé, P0es8

studies also face a common challenge inherent to file@g: the lack of prdire data. Few field

studies have measurements of treated and untreated stands before and affeRayniivad &

Peterson, 2005and those that do rely on the assumption that their plots represent the range of
heterogeneity in severity seen across the fire. When landscape scale severity has beed, mekysur
unitless spectrahdices(i.e., INBR or RANBR), sometimes validated using GBiother index)

have been usd@inney, McHugh, &Grenfell, 2005; Prichard & Kennedy, 2014; van Leeuwen, 2008;
Wimberly et al., 2009)

To-date, no prior study has quantified specific, biometric effects of wildfire on forests
following MPB-induced tree mortalitgr forest treatmentacross an entire firén partbecausef the
challenges in acquiring field observations of forest biometrics as described above. However, the
recent general increasedmailableLight Detection and Ranging (LIDAR) data has resulted in several
cases where repeat LIDAR datgptae the changes effected by a wildfire over large areas, including
the event analyzed here, which occurred in an fevhstevarying levels oextensive MPB damage
and multiple timber harvest treatment types and ages presenprefire. LIDAR is a poven forest
measuremertbol, able to detect numerous structural chanmgesnopyheight, cover, height
distribution of outer canopy surfaces, vertical distribution of canopy material, volume, biomass, and
gap sizgHudak et al., 2009; Kane et al., 2013; Lefsky et al., 200@jowing the 2012 Pole Creek
Fire in central Oregon, pefite LIDAR data was acquired in 2013 to resample an area flown in 2009
following an extensive MPB outbreak in the early 2000snt these datdcCarley et al. Chapter
1, this thesisexplored empirical relationships between spectral indices derived from Landsat and
landscapescale measurementsfofeststructure change by LIDAR. They found that change in

canopy cover was the mibaccurately predicted fire effect and that a rteltnporal band ratio (d74)
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outperformed other more widely utilized indices (i.e., dANBR and RANBR). However, they also noted
anonalouspatterns in their data that were spatially coincident witHipeetree mortality from MPB
induced tree mortalitgnd forestarvest Sincethe McCarley et al. Chapter 1 this thesispnalysis

did not explore the specific impacts of fiie disturbances on model relationships, their results raise
significant questions regding the influence of MPB arfdrestharveston both model accuracy and
subsequent fire effects.

The objective of this study was to determine the influence of antecedent MPBa&wdhrk
forest harvest treatments subsequent fire severity. This stuphantifies this effect by evaluating
change in canopy cover (dCC) as estimated by +tarttporal LIDAR for areas identified as being
affected by (1) MPB followed by wildfire (MPB/Fire), (2) harvest followed by wildflHARV /Fire),

(3) a combination of fast harvest and MPB followed by fird ARV/MPB/Fire), and (4) wildfire
having not been proceeded by either MPB or harvest-{filyg. Areas outside of the fire affected by
(5) MPB, (6)HARYV, (7) HARV/MPB, and (8) no préire agent (No Agent/No Fire) werantified

as a control. In addition to analyzing these differentss studyalso sought to understand how MPB
outbreakintensity, harvestreatmentype, and time since forest harvasiatmenaffected severity by

exploring trends in these attributes.

2. Material and Methods
2.1. Study fea
The Pole Creek Fire (10,800 ha) occurred in September 2012 in the eastern Cascade
Mountains of central Oregon (Fig.1).Onet hi rd of the fire area falls \
Wilderness AreaOf the remainig two-thirds, timber harvess allowed on 3,408ectaregand

another2,536hectaeswith scenic view restrictiondIPB caused significant mortality, especially
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throughout the wilderness area, between 2000 and (2@Q@&ndix C) For additional descriptioaf

the study area, see McCarley et Ghépter 1 this thesis).

Figure 2.1: Location of Pole Creek Fire (white outline) in central Oregon. Data overlaid on 2014
National Agriculture Imagery Program imagery.

2.2 LiDAR [ata

Pre and posffire LIDAR data available acrogbe entire firewvere processeand transformed

to a 30meter grid representing estima@dC as described in McCarley et @hapter 1 this thesis).

2.3. MPB [ata



