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 Abstract
Fire risk models are widely utilized to mitigate wildfire hazards, 
but models are often based on expert opinions of less under-
stood fire-ignition and spread processes. In this study, we used 
an empirically derived weights-of-evidence model to assess what 
factors produce fire ignitions east of San Diego, California. We 
created and validated a dynamic model of fire-ignition risk based 
on land characteristics and existing fire-ignition history data, 
and predicted ignition risk for a future urbanization scenario. 
We then combined our empirical ignition-risk model with a 
fuzzy fire behavior-risk model developed by wildfire experts to 
create a hybrid model of overall fire risk. We found that roads 
influence fire ignitions and that future growth will increase risk 
in new rural development areas. We conclude that empirically 
derived risk models and hybrid models offer an alternative 
method to assess current and future fire risk based on manage-
ment actions.

Introduction
The dangers posed by wildland fires, particularly in areas where the 
urban interfaces the rural, have led to numerous methodologies for 
mapping wildfire risk over the past two decades (Chuvieco 2003). 
Mapping wildfire risk requires not only an understanding of what 
factors contribute to the existence of a wildfire, but also a designa-
tion of the values actually at risk. Usually, this encompasses humans, 
human infrastructure, and human-valued ecosystems and ecosystem 
services. Given this human-oriented definition of risk, maps and 
mathematical models of fire risk fall primarily into two categories: 
the probability of an initial ignition; and, given that an ignition oc-
curs, the potential for fire behavior conducive to fire spread. In both 
cases, Geographic Information Systems (GIS) and remotely sensed 
data have contributed significantly not only to spatially mapping 
fire risk, but also to understanding the relationships between con-
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tributing factors (such as the weather, vegetation composition and 
condition, and topography) and wildfire occurrence and behavior 
at variable spatiotemporal scales (Chuvieco 2003). These relation-
ships are often difficult to quantify as inputs to the models used 
to produce fire risk maps and, given this lack of existing empirical 
knowledge about fire risk, there is considerable room to explore 
new approaches to mapping fire risk and modeling the factors that 
contribute to fire risk. 

This study focuses on mapping the probability of current and future 
risk of wildfire ignition in one of the most fire-prone regions of the 
U.S.: San Diego County in southern California. Compared to the 
number of models developed for mapping risk of fire spread, models 
of fire-ignition risk have been fewer in number. This stems primarily 
from the difficulty of predicting atmospheric conditions conducive 
to lightning strikes, which start fires that eventually become the ma-
jority of large fires in the U.S. In urban southern California, however, 
fewer than five percent of wildfires are ignited by lightning, with 
most large wildfires ignited by human activities (Keeley, Fothering-
ham, and Morais 1999). Understanding how humans ignite fires in 
this region, then, is critical to fire management personnel who are 
responsible for mitigating this risk. Additionally, this understand-
ing must be flexible enough to accommodate the changing human 
footprint on the landscape in the rapidly growing region. 

Two types of models are generally developed for mapping wildfire-
ignition risk. The deterministic, or “fuzzy,” model relies on expert 
opinion to determine which factors contribute to the process being 
modeled, and then assigns a weight to each of those factors within 
the model. A static map, predicting a set of outcomes, is then pro-
duced. This is the most common type of model currently used to 
map wildfire risk, as weights can be adjusted to produce the outcome 
expected by model developers based on their knowledge and the 
intended use for the resulting map. For example, Radke (1995) cre-
ated a GIS model of fire hazard in the East Bay Hills of California, 
with arbitrarily chosen inputs of vegetative fuels and structural fuels, 
which were differentially weighted based on expert opinions ob-
tained in interviews of experienced fire experts. Burgan, Klaver, and 
Klaver (1998) used estimated fuel moisture in the linearly weighted 
National Fire Danger Rating System to produce a Fire Potential Index 
for the continental U.S. 
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The second method for mapping fire-ignition risk relies on statis-
tical modeling to empirically derive relationships between causal 
factors and the resulting ignition of a wildfire. Since these models 
rely on a training data set of fire occurrences, they can be revised 
as additional training data is acquired, and, more importantly, can 
be validated using some portion of the training data not used for 
model creation. In wildfire-ignition risk, these models use previous 
fire occurrences as the data for training the model, and often assess 
potential for ignition based on either the availability of the surface 
fuel to burn (Hardy and Burgan 1998) or the development of atmo-
spheric conditions conducive to dry lightning (Rorig et al. 2003). 
The most frequent critique of these models is that they are based on 
only limited data and don’t necessarily represent local conditions, 
as there is no place for expert knowledge in pure empirical models 
(Martin et al. 2005). However, empirical models define relationships 
and describe a process when little is known pertaining to how causal 
factors produce an outcome. This is often the case with wildfire risk, 
as the contributing factors to wildfire ignitions are often poorly 
understood, and therefore difficult to predict. 

Since both types of models offer both benefits and drawbacks, it 
is critical to understand the purpose of the model when choosing 
a type; in this case it is the mitigation of wildfire ignitions by fire 
management and public planners. Farris, Pezeshki, and Neuen-
schwander (1999) reviewed the inputs, decision-making process, 
and accuracy levels of both deterministic and empirical methods 
of modeling wildfire risk, and concluded that none of the models 
tested was “ideal” for fire management. They suggested that a hy-
brid model incorporating both expert knowledge and empirical, 
non-biased methods may provide the desired answers. The southern 
California region has been the focus of many wildfire risk studies 
(Yool et al. 1985; Chou et al.1993; Keeley, Fotheringham, and Morais 
1999), largely because it is densely populated and has experienced 
numerous catastrophic wildfires in the past century, including the 
2003 Cedar Fire east of San Diego, the largest wildfire ever recorded 
in California at just over 113,000 ha (Keeley, Fotheringham, and 
Moritz 2004). Since previous studies in the region have been pri-
marily deterministic, using expertly weighted models to produce 
static maps, this study produced an empirical model as an alterna-
tive approach for mapping wildfire-ignition risk (e.g., Dickson et al. 
2006). The model was used to mask both current fire-ignition risk 
and future potential fire-ignition risk, based on a predicted urban 
growth scenario (Steinitz et al. 1997). The hybridization approach 
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advocated by Farris, Pezeshki, and Neuenschwander (1999) was 
then used to combine the wildfire-ignition probability map with 
a deterministically produced map of wildfire-spread risk from the 
California Department of Forestry and Fire Protection (CDF) to cre-
ate an overall wildfire risk map for the region.

The objectives of our study were to (1) determine the process by 
which recent wildfires have ignited in eastern San Diego County, 
California, by developing and validating an empirical model for fire-
ignition risk; (2) apply the risk model to a future growth scenario 
to assess future fire-ignition risk; and (3) combine the weights-of-
evidence model with a knowledge-driven fire-risk model to create 
a hybrid overall fire-risk model.

Study Area
In this study, we focus on the eastern part of San Diego County, 
primarily because it is the area that will likely see the most wildland-
urban interface (WUI) expansion over the next few decades (Steinetz 
et al. 1997). A 378,720 ha portion of San Diego County, California, 
was chosen as the study area (Figure 1) based on the availability of 
the most accurate and extensive fire-ignition data to train the statis-
tical model. The area lies to the east of the San Diego metropolitan 
area and contains the city of Ramona and portions of the Cleveland 
National Forest and Anza-Borrego Desert State Park. Mediterranean 
vegetation types dominate the region, with most of the study area 
covered in chamise (Adenostoma spp.), chaparral (Ceanothus spp.), 
and manzanita (Arctostaphylos spp.). At higher elevations, oak (Quer-
cus spp.) forms a broadleaf deciduous forest adjacent to coniferous 
forest consisting of mountain mahogany (Cercocarpus betuloides), 
pine (Pinus spp.), and fir (both Abies concolor and Pseudotsuga mac-
rocarpa) (Wells 2004). The mostly shrub vegetation is both fire-de-
pendent and fire-prone: its waxy leaves burn easily and intensely, 
and it resprouts quickly after a fire. This makes the region prone to 
frequent fires and to less-frequent but highly catastrophic large fires 
driven by fall Santa Ana weather patterns (Keeley, Fotheringham, 
and Morais 1999; Keeley and Fotheringham 2001). 

Methods and Data
To assess wildfire-ignition risk in the study area, we used a Bayes-
ian weights-of-evidence model in a GIS environment. This was the 
same approach taken by Dickson et al. (2006) in their assessment 
of fire-ignition risk in Arizona. Arc Spatial Data Modeler (ArcSDM) 
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is an extension developed for ESRI ArcGIS software that calculates 
weights based on raster dataset inputs and vector (point) training 
data (Sawatzky et al. 2004). The ArcSDM weights-of-evidence tool 
has previously been used to predict fire ignitions (Dickson et al. 
2006), and also for predicting mineral deposits (Bonham-Carter, Ag-
terberg, and Wright 1988; Raines 1999), ecological habitats (Aspinall 
1992; Mensing et al. 2000), and landslide potential (Lee and Choi 
2004). Bayesian weights-of-evidence modeling calculates “weighted” 
positive and negative coefficients for the classes in evidential raster 
layers, based on the spatial correlation with the classes. Evidential 
layers are generalized into binary maps, according to favorable and 
unfavorable correlation, and are then combined using Bayesian 
modeling to calculate the posterior probability that a fire ignition 
will occur in a given cell within the study area. 

Data
During pre-processing, several data sets (designated “evidential 
layers” for purposes of modeling) were spatially correlated to the 
fire-ignition history set, to determine what characteristics of the 
study area contribute to ignition of wildfires. Aspect, slope, vegeta-
tion, and fuel model layers showed no significant correlation to past 
fire-ignition points. Land use/land cover (LULC), land ownership, 
roads, and elevation showed significant correlation to the fire- 
ignition training points; subsequently, these four evidential layers 
were utilized as inputs to the fire-ignition risk model. The LULC 
and land ownership data were provided from the continuation of a 
previous project (Steinitz et al. 1997), and since they were initially 
derived from Landsat data analysis, the spatial resolution of the data 
was 30 m. The elevation data was derived from the national eleva-
tion dataset (also 30 m resolution), and the roads were rasterized 
from a TIGER line file available at the California Geospatial Data 
Clearinghouse.

The fire-ignition occurrence data was derived from a 12-year fire-
ignition history published by CDF (http://frap.cdf.ca.gov/proj-
ects/fire_data/fire_perimeters/). Due to the rapidly changing land 
cover in the study area, training points were selected for the years 
1999–2003, allowing us to assess the fire-ignition process and predict 
future ignition risk for a five-year period. The 390 initial fire-igni-
tion history points where “thinned” to remove all but one point per 
30m raster cell, leaving 363 points for “training” the model. A 50 
percent subset of the “thinned” training points was selected using 
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ArcSDM to randomly remove half of the set for validation, leaving 
128 training points. 

The future-growth scenario input layer was based on changes esti-
mated in the LULC evidential layer from a study performed using 
regional growth models (Steinitz et al. 1997). The premise of the 
regional growth models was that one million new residents would 
move into San Diego County under one of four potential develop-
ment scenarios: rural, low-density growth; or high-density growth in 
either coastal regions, the northern portion of the county, or around 
three new “urban centers.” Previous work by the lead author test-
modeled all four scenarios, and the “three urban centers” scenario 
showed the most significant change in wildfire-ignition risk. This sce-
nario was selected for the final model run and is presented here as the 
future growth evidence layer. Farris, Pezeshki, and Neuenschwander 
(1999) noted the importance of hybrid models in capitalizing on 
both expert knowledge and statistically derived quantification of a 
process. With this in mind, we found a deterministic, fuzzy model of 
wildfire risk for comparison to the weights-of-evidence model (Figure 
2). CDF derived this predictive Fire Threat model from a potential 
fire-behavior map (based primarily on vegetative fuels) and a fire-
history assessment based on large fire perimeters, where the input 
layers were weighted according to the modeler’s expert knowledge 
of fire (http://frap.cdf.ca.gov/data/frapgisdata/select.asp).

Calculation of Probability
The prior probability of a wildfire ignition was calculated as the 
total number of ignition points in the training data set over the 
area of the study region, essentially describing the potential for an 
ignition point to occur in any cell by chance. Correlations between 
evidence layer classes and training points were calculated in ArcSDM 
to determine which classes were associated with the fire-ignition 
training points. The difference between positive and negative cor-
relations was calculated as the contrast value, which measures the 
“strength” of the association between training points and classes 
within evidence layers (Bonham-Carter 1994). The contrast was then 
used to generalize evidence layers into binary maps (Figure 3), where 
positive contrast denoted the classes “inside” the pattern (meaning 
those classes were significantly associated with wildfire ignitions), 
while negative or null contrast denoted the classes “outside” the 
pattern (not associated with wildfire ignitions). The four generalized 
evidential layers were then combined to calculate a response theme 
representing posterior probability of an ignition based on binary 
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weights of evidence. The weights-of-evidence modeling process 
assumes that the evidence layers within the model are condition-
ally independent (CI) with respect to the training points. To test 
for the assumption of CI, a CI ratio and Agterberg and Cheng test 
were calculated using ArcSDM (Bonham-Carter 1994; Agterberg and 
Cheng 2002). The accuracy for the posterior probability map was 
validated by tallying the percentage of validation points that fell 
within the range of posterior probabilities that exceeded the prior 
probability. 

The future-growth simulation model was created by generalizing the 
future-growth evidence layer into a binary map using contrast values 
derived from the current LULC contrast values, and a posterior prob-
ability map was calculated. Percent change between the current and 
future posterior probability maps was calculated to assess changes 
in wildfire-ignition risk based on future urban growth. 

Finally, a hybrid model was created to incorporate the empirically 
derived Bayesian model with the expert knowledge integrated into 
fuzzy models. First, we compared the CDF expert threat model to our 
model using a Kappa coefficient statistic to determine the extent of 
spatial difference between the two assessments. We then combined 
our two models by assigning each risk level a numerical value (low 
= 1, extreme = 4) and creating a new overall fire risk map where the 
cell value equals the sum of the two model values. The final risk of 
fire based on whether a cell has a probability of igniting (empirical 
model) and then burning (deterministic model) was broken into 
four categories based on the final sums.

Results

Fire-ignition process
Since empirical models are often distrusted by fire managers and can 
be difficult to validate with a relatively infrequent occurrence such 
as a wildfire ignition, it is less meaningful to report probabilities of 
ignition than to report on and discuss the process by which fires 
ignite in the study region. The posterior probability maps produced 
by the weights-of-evidence model were reclassified into “Low,” 
“Moderate,” “High,” and “Extreme” risk of ignition (Figure 4), based 
on the natural breaks above and below the prior probability of an 
ignition. The positive and negative correlation weights calculated 
for each evidence layer indicate that proximity to roads (C = 1.288) 
was the best predictor of where fire ignitions do occur (Table 1). 
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Figure 3.—Evidence layers generalized into “favorable” and “unfavorable” 
evidence, based upon maximized contrast values. a. Elevation, b. 
Ownership, c. Land Use Land Cover, d. Proximity to Roads. The binary 
patterns are then combined using Bayesian statistics to generate a posterior 
probability map, which indicates the unique combination of binary 
patterns and is the probability that a fire ignition will occur, given the 
presence of some favorable evidence.
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Elevation was the worst predictor of fire-ignition occurrence (C = 
0.069). In the validation assessment, 72 percent of the validation 
ignition points occurred in areas that were predicted at high or 
extreme ignition risk, the two classes where posterior probability 
values exceeded the prior probability. 

Table 1. Weights, contrast, and confidence values for each 
evidential layer used in the weights-of-evidence model. The 
hypothesis of conditional independence can be accepted as 
expressed by a CI Ratio of 1.003 and an Agterberg & Cheng 
test of 48.3 percent. The contrast value indicates the strength of 
association between training points and evidence layers, with a 
high-contrast value indicating a strong predictive evidence layer. 
The confidence value is the StudC measure, which indicates the 
model’s confidence that the contrast value is not zero. Confidence 
values > 1.64 are operating at the 95 percent confidence interval 
(a = 0.05).

Training Points: n = 128      

Unit Area (Sq. m) 30

Prior Probability: 0.00003

Conditional 
Independence Ratio: 1.003

Agterberg & Cheng Test: 48.3%

Evidence W+ W-
Contrast 

(C)
Confidence 

(StudC)

Proximity to Roads 1.0020 -0.2860 1.2882 6.9220

Land Use/Land Cover 0.4840 -0.1610 0.6442 3.3780

Ownership 0.41 -0.162 0.5718 3.0725

Elevation 0.0270 -0.0430 0.0690 0.3796

Future Growth Scenario Model
The percent change between the posterior probability maps for 
current fire-ignition risk and fire risk based on a future growth sce-
nario indicated that 3 percent of the study area will see a decrease 
in fire-ignition risk, 87 percent will see no significant change in fire 
risk, and 10 percent will see an increase in fire-ignition risk (Figure 
5). Development of high-density urban areas is associated with 
decreases in fire-ignition risk in this model, while development of 
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rural residential areas (the WUI areas) is associated with increased 
probability of ignition.

Deterministic vs. Empirical Models
We found our two models to be significantly different (kappa = 
-0.029), which was to be expected given that CDF modeled fire 
threat was based primarily on potential fire behavior, while we 
modeled risk of ignition. Our hybrid approach, however, yielded a 
clearer picture of overall fire risk by taking into account both the 
likelihood of a fire ignition and the ability for the ignition to spread 
(Figure 6). For example, an area that was deemed high risk in the 
CDF threat model is not necessarily at high risk if there is no threat 
of an ignition occurring.

Discussion
Our objective in modeling fire-ignition risk with a Bayesian weights-
of-evidence model was to statistically assess the process by which 
wildfire ignites in the study area, particularly given the high fre-
quency of human-ignited fires. Other fire-risk models (particularly 
deterministic models) have utilized slope, aspect, and vegetation, 
three variables that determine fire behavior in the standard fire be-
havior models (Rothermel 1983). For the study area, however, we 
did not find significant correlations between these variables and fire 
ignitions. Instead, we found significant correlations between the 
fire ignitions and roads, land use/land cover, elevation, and land 
ownership. While we report on only 5 years of fire-ignition data, we 
found the same significant correlations between the evidential layers 
and 10 years of fire-ignition data. This indicates that for the study 
area, the biophysical factors have less influence in wildfire ignitions 
than human-environment characteristics (e.g., roads, land owner-
ship, and land use). While the human-environment factors can be 
manipulated through regulation, education, construction, and other 
avenues, the biophysical elements are more difficult to control. For 
fire managers, understanding what human factors they need to focus 
on managing is critical to lowering the incidence of fire, and this 
model provides this focus through the weights produced. 

To someone familiar with the area, simply looking at a map of fire-
ignition density may reveal to the observer that fire ignitions in the 
area are primarily along major roads. The empirical model, however, 
defines quantitatively the strength of the correlation between roads 
and ignitions, and tells us how much stronger the roads correlation 
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is than correlation to certain vegetation types, population densities, 
or elevations. Additionally, the posterior probabilities allow us to 
assess the percent changes in ignition risk associated with inevitable 
future development.

Beyond evaluating the risk for wildfire ignitions, the empirical model 
also allows us to assess the weaknesses of current methods for pre-
dicting wildfire hazard. Our training data set is one commonly used 
for fire research, but CDF still uses the somewhat-outdated method 
of locating ignitions in the exact center of a map section, making 
the dataset less accurate as a whole. We also questioned whether 
the reason so many ignitions occurred along roads was because GPS 
points or mile markers were taken at a fire truck sitting on the road 
somewhere near the actual fire. 

Conclusion 
Coupled with expert knowledge, weights-of-evidence and other 
empirical models can be an effective tool for fire-hazard manage-
ment. Utilizing the weights-of-evidence tool within the Spatial Data 
Modeler extension for ArcGIS allows a user to create empirical models 
to evaluate and gain insight into processes that may not be fully 
understood, such as fire ignitions. For eastern San Diego County, the 
location of major roads was shown to be the primary determinant in 
fire-ignition occurrence. Limitations in weights-of-evidence models 
do occur and are dependent upon the data being used and the bias 
of the modeler. We were limited in our processing of these models 
by our training dataset obtained from the CDF. 

Empirical models give us a way to assess future risk and help us to 
understand processes and mechanisms driving risk. They do not re-
place expert knowledge and deterministic models, and it would not 
be recommended to conduct modeling without insights from those 
individuals who understand the process best. Combining a fuzzy 
model with an empirical model in a hybrid fashion is an alterna-
tive way to infuse expert knowledge into the risk-modeling process. 
Overall, continued efforts to model the processes that produce fire 
risk in the first place can serve only to assist the fire-management 
community whose goal is to mitigate that risk.
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