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A B S T R A C T

There is a strong link between vegetation heterogeneity and biodiversity in grassland ecosystems. However,
quantifying spatial patterns of key metrics, such as aboveground biomass, at landscape scales remains a chal-
lenge. This stems from difficulties in accurately estimating grassland biomass at fine scales over large areas and
determining what spatial scale is most appropriate to monitor how grassland impacts (e.g., livestock grazing)
affect spatial patterns of biomass (i.e., spatial heterogeneity). Here, we use lidar metrics (volume, max height,
and intensity) in Random Forest models to quantify fine-resolution (pixel size 1.0668 m (3.5 ft)) aboveground
biomass estimates (pseudo R2 = 0.59; RMSD = 139.4 g m-2) across a bunchgrass prairie grassland system. To
determine both the effects of grazing on the spatial heterogeneity of aboveground biomass and which pixel size
is most sensitive to the effects of livestock grazing on grassland heterogeneity, we aggregated fine-resolution
biomass maps to coarser pixel resolutions (3 m, 5 m, 8 m, 20 m, 30 m) across 23 pastures with varying levels of
grazing intensity. Following aggregation to coarser pixel resolutions, we observed that semivariogram models
produced statistically different (α = 0.05) measures of biomass heterogeneity. The range statistic was the only
pasture-level semivariogram metric sensitive to grazing, and this relationship was only significant when using
the finer-resolution datasets (~1 m to 8 m pixels). Our results demonstrate 1) the applicability of lidar data for
quantifying biomass in short-statured grasslands, 2) that grazing in pacific northwest bunchgrass prairie can
decrease spatial heterogeneity of aboveground biomass and 3) that fine-resolution satellite data (< 10 m pixel
sizes) are necessary to effectively monitor the effects of grazing on the spatial heterogeneity of vegetation
biomass, an indirect metric of biodiversity at management scales (pasture sizes ranged from 40 to 745 ha) in this
grassland ecosystem.

1. Introduction

Natural grassland ecosystems are subject to drivers of environ-
mental change such as grazing and drought, which impact the con-
servation of critical species (Fleischner, 1994), annual forage produc-
tion (Augustine and McNaughton, 1998), proper ecosystem function
(Allen-Diaz et al., 1995), and carbon storage (McSherry and Ritchie,
2013). However, relationships and feedbacks between drivers and
outcomes of interest are relatively poorly understood (Herrick et al.,
2010). Land managers interested in monitoring grassland system re-
sponses to environmental drivers have called for more research to study
vegetation patterns and processes at larger spatial and temporal scales

that align with land management practices (Bestelmeyer and Briske,
2012; Sayre et al., 2013, 2012). This is due, in part, to the increasing
need to quantify and monitor ecosystem services beyond livestock
forage, and promote processes that increase vegetation heterogeneity
given its positive link to biological diversity (Adler et al., 2001;
Fuhlendorf & Engle, David, 2001; Fuhlendorf et al., 2012). Manage-
ment practices such as grazing can have positive or negative impacts on
various parameters of vegetation heterogeneity such as species com-
position, structure and biomass (Adler et al., 2001; Fuhlendorf and
Engle, David, 2001; Hempson et al., 2015), but few grassland studies
quantify the effect of grazing on vegetation heterogeneity spatially
using any of the above parameters (Adler et al., 2001; Bestelmeyer and
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Briske, 2012) and fewer still quantify vegetation heterogeneity spatially
using remotely sensed data (e.g. Virk and Mitchell, 2015).

We focus on quantifying the spatial heterogeneity of aboveground
biomass, because in grassland systems biomass amount is a commonly
used indicator to assess and plan grazing management (Benkobi et al.,
2000; Friedel et al., 1988), and is correlated to measures of vegetation
structure (e.g. Heady, 1957; Robel et al., 1970). To quantify spatial
heterogeneity of vegetation biomass and how this pattern is impacted
by grazing, two issues need to be addressed initially: 1) quantifying
biomass accurately across the landscape and 2) determining the spatial
resolution at which to quantify heterogeneity which is most sensitive to
the grazing process. Using field plot measures to accurately assess
grassland vegetation metrics at landscape scales has proven difficult
(Booth and Tueller, 2003; Pickup et al., 1994; West, 2003). The cost,
time, and observer bias associated with field data collection and the
need to monitor vegetation across large areas has led land managers
and scientists to turn to remotely sensed data to provide estimates of
grassland metrics such as cover or biomass (Booth and Tueller, 2003;
Guerschman et al., 2015) as well as biodiversity (Turner et al., 2003;
Wang and Gamon, 2019). While a variety of remotely sensed datasets
and analysis methodologies have focused on providing measures of
grassland biomass (Anderson et al., 1993; Friedl et al., 1994; Jacques
et al., 2014; Jansen et al., 2018; Marsett et al., 2006; Todd et al., 1998),
and more recently estimates of species diversity (Gholizadeh et al.,
2019), providing spatial measures of vegetation heterogeneity with
gridded remotely sensed data is challenging, due to the interaction
between the scale of the imagery and the underlying physical or bio-
logic pattern in question (Karl and Maurer, 2010). The ability to
quantify patterns that are used to infer how an ecological process is
impacting the landscape is tied to the grain size and extent of the study
(Wiens, 1989). These relationships in turn impact the choice of spatial
resolution (i.e. pixel size) to use for analysis, as well as the analysis
results (Hudak and Wessman, 1998; Lechner et al., 2009; Woodcock
and Strahler, 1987).

Similarly, there is a need to identify what metric of spatial hetero-
geneity is appropriate to the ecological process of interest. Spatial
heterogeneity can be quantified using a variety of metrics, including
non-spatially dependent measures like the coefficient of variation,
which provides a measure of variability over an area or distance (Adler
et al., 2001), and spatially dependent measures produced using cate-
gorical maps, such as fractals, contagion, evenness, and patchiness (Li
and Reynolds, 1994). Geo- or spatial-statistics provide another way to
quantify spatial heterogeneity in continuous numerical data, producing
measures of spatial dependence and spatial pattern (Adler et al., 2001).
Spatial statistics such as Moran's I (Moran, 1950), the Getis-Ord general
G statistic (Getis and Ord, 1992), semivariograms and correlograms
have all been used to provide spatial metrics of gridded remotely sensed
data and to explore how grazing affects vegetation heterogeneity (e.g
Virk and Mitchell, 2015; Sankey et al., 2009). In this study, we focus on
measures of spatial heterogeneity that quantify spatial patterns of
continuous numerical data, as found in remotely sensed imagery.

Landscape-scale studies using remotely sensed data to quantify
grassland spatial heterogeneity in relation to grazing have been con-
ducted primarily with moderate-resolution passive sensors, including
10 m Sentinel-2 data (Scarth and Trevithick, 2017), 30 m Landsat data
(Virk and Mitchell, 2015), and 20 m data from Satellite Pour l’Obser-
vation de la Terre (SPOT) (Sankey et al., 2009). These previous studies
provide spatial heterogeneity metrics for their respective ecosystems,
but they do not explore the sensitivity of the reported spatial hetero-
geneity to the spatial resolution of the remotely sensed data to help
guide the selection of the most appropriate scale to monitor the grazing
process. They are also limited by the use of passive satellite sensors,
which lack the ability to directly quantify vegetation structure or
height. In contrast to passive satellite sensors, active sensors such as
lidar can more accurately assess vegetation structure, types, and bio-
mass by providing 3-dimensional data as well as return intensity data

on vegetation and surfaces (Eitel et al., 2016a; Hudak et al., 2009).
While passive structure-from-motion photogrammetry techniques can
also generate 3-dimensional point clouds to estimate grassland biomass
(Wijesingha et al., 2019) or structure (Forsmoo et al., 2018), currently
this technique is applied to smaller extents or plots (< 1 ha) within
fields or pastures (e.g. (Gillan et al., 2019; Wijesingha et al., 2019) not
multiple complete pasture areas.

Lidar in comparison can map larger spatial extents and is commonly
used to map forested ecosystems, and is increasingly being used to map
small-statured vegetation communities such as arctic tundra (Greaves
et al., 2016), salt marsh habitat (Kulawardhana et al., 2014), and the
sage-brush steppe (Glenn et al., 2015; Li et al., 2017) yet research to-
date in grassland systems is limited. This is potentially due to known
limitations of lidar when estimating small-statured vegetation metrics,
such as the negative impact of dense vegetation on lidar pulse pene-
tration to the soil surface (Kulawardhana et al., 2014), or missing the
highest portion of the plant material due to the sampling density and
laser spot size of the lidar point cloud (Greaves et al., 2016).

Recent research suggests that despite these limitations, structural
vegetation metrics such as biomass and height can be reliably measured
with lidar in low-stature ecosystems (Greaves et al., 2016, 2015;
Kulawardhana et al., 2014). Within grassland systems, vegetation me-
trics at plot scales have been quantified using ground-based terrestrial
laser scanners (TLS) (Cooper et al., 2017; Eitel et al., 2014) or vehicle-
mounted lidar systems (Radtke et al., 2010; Schaefer and Lamb, 2016).
Discrete return lidar collected with an unmanned aerial vehicle (UAV)
has also demonstrated statistically significant relationships between
lidar metrics and field estimates of canopy heights, cover and biomass
in grasslands (Wang et al., 2017). Full waveform lidar collected by
airplane during leaf-on and leaf-off dates has been used to classify
grassland habitat (Zlinszky et al., 2014), as well as to provide in-
formation for conservation objectives (Zlinszky et al., 2015), but rarely
has airborne lidar been used to quantify biomass and vertical structure
in natural grassland systems.

Because lidar can provide accurate fine-scale measures of vegetation
biomass or structure, it can also facilitate an exploration of how grain
size (i.e. the pixel size of imagery) impacts the quantification of vege-
tation heterogeneity, as the raw point cloud data can be aggregated to
increasingly coarser pixel sizes (Eitel et al., 2016b). It is ideal for remote
sensing and ecological studies to quantify phenomena across varying
grain sizes and spatial extents to provide a more complete under-
standing of how the process and pattern is impacted by the scales
chosen for inquiry (e.g. Hudak and Wessman, 1998; Woodcock and
Strahler, 1987), but cost, logistics and technology are often real-world
barriers. The selection of remotely sensed data for analysis should be
based on knowledge of the system (i.e., the scene model; Woodcock and
Strahler, 1987), cost, the objectives of the study, and the scale at which
subsequent management action happens (Phinn et al., 2003; Wiens
et al., 2009). The underlying assumption in selecting one pixel size or
sensor to quantify spatial heterogeneity is that the resolution of the
spectral data is finer than or equal to the scale of the heterogeneity of
the ecological object or pattern in question; however, in most cases the
ideal spatial resolution (i.e. pixel size) is unknown (Johansen et al.,
2007). While airborne lidar datasets are too costly for monitoring
grassland biomass or heterogeneity with repeat acquisitions, they can
be used to assess the pixel size at which critical patterns of spatial
heterogeneity are no longer detectable, thus answering the question of
whether more affordable (but coarser-resolution) passive reflectance
sensors can accurately quantify patterns of spatial heterogeneity in
grassland biomes.

Our research objectives for this study were to 1) accurately model
bunchgrass vegetation biomass from airborne lidar data using vegeta-
tion canopy, intensity and topographic metrics, 2) determine the impact
of decreasing spatial resolution (i.e., increasing grain size) on measures
of spatial heterogeneity, and 3) identify the measures of spatial het-
erogeneity most sensitive to grazing intensity and how this sensitivity
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changes with increasing spatial resolution of remotely sensed data.

2. Methods

2.1. Study area

The Zumwalt Prairie is a Pacific Northwest Bunchgrass Prairie
(PNWBP) habitat located in northeast Oregon (Fig. 1). The PNWBP is a
highly threatened and understudied temperate grassland ecosystem
(Kimoto et al., 2012; Tisdale, 1982) dominated by C3 bunchgrass spe-
cies, including Idaho fescue (Festuca idahoensis Elmer), bluebunch
wheatgrass (Pseudoroegneria spicata (Pursh) A. Love) and Sandberg's
bluegrass (Poa secunda J Presl) which may be especially vulnerable to
harmful effects of poorly managed grazing compared to other grassland
systems (Adler et al., 2004; Mack and Pyke, 1983; McLean and Tisdale,
1972). Elevations across the study area range from 1000 m to 1600 m.
Average summer (June–August) temperatures range from 11.8 –
17.5 °C, with average annual precipitation of 348.3 mm (2006–2012
Zumwalt Weather Station).

2.2. Data

2.2.1. Vegetation field data
The Oregon Department of Geology and Mineral Industries

(DOGAMI) contracted a lidar acquisition flight over the study area as
part of a statewide collection effort in 2015 (section 2.2.3). In con-
junction, we collected data on aboveground vegetation biomass, height,
and foliar cover within 65 1 m2-quadrats on The Nature Conservancy's
Zumwalt Prairie Preserve property 10–14 July 2015, directly after the
lidar flight. This sampling period was selected to correspond with peak
biomass and a time when most of the perennial grasses and forbs are

still photosynthetically active. Quadrat locations were subjectively se-
lected in the field to represent a gradient of vegetation biomass (e.g.
Greaves et al., 2016) from quadrats containing no vegetation (i.e., bare
ground) to quadrats dominated by Basin Wildrye (Leymus cinereus
(Scribn. & Merr) A. Love), a bunchgrass species which typically has the
largest vegetative growth (in both structure and biomass) compared to
the other common bunchgrass species found within the study area (See
Table S1 for quadrat photos). Vegetation cover and height data were
estimated across 36 evenly distributed points within each 1 m2-quadrat
using a grid-point intercept approach following Godínez-Alvarez et al.
(2009). Biomass data were collected by harvesting all standing vege-
tation within the quadrat. All clipped vegetation was bagged in the field
and oven dried at 60 °C to obtain a dry weight for analysis. The center
XY location of each quadrat was obtained using a TopCon GR-3 survey
grade GPS system (nominal horizontal accuracy ~4 cm) running in Real
Time Kinematic (RTK) mode using the same vertical and horizontal
datum as the airborne lidar data.

2.2.2. Grazing management data
We obtained stocking rate data from the land managers for each

pasture area within the study area. Stocking rates by pasture are ex-
pressed as Animal Unit Months per hectare (AUM ha−1). Adjustments
in the stocking rates were calculated using animal use equivalencies
(AUE) for the different type of livestock type (e.g. bulls had 1.2 AUE,
yearlings 0.75 AUE, and cow-calf pairs 1.0 AUE). For subsequent ana-
lysis we selected pastures across the study site that consisted primarily
of upland prairie grassland habitat and were grazed in 2015 before the
lidar flight or were un-grazed for more than two years prior to the lidar
acquisition. These selection criteria produced 23 unique pastures that
averaged 125 ha (range 40 ha to 745 ha) for further analysis, eight of
which had no recorded livestock grazing and 15 that had an average

Fig. 1. Map of the Zumwalt Prairie study area showing the intersection between the lidar footprint, the Zumwalt Prairie grassland habitat, and the Zumwalt Prairie
Preserve (TNC). Locations where field data were collected are shown with black triangles. Because the majority of the Zumwalt Prairie is privately owned, our sample
locations were limited to The Nature Conservancy (TNC) Zumwalt Prairie Preserve boundaries.
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stocking rate of 0.80 Animal Unit Months per Hectare (AUMs/ha), and
a range of 0.39–1.718 AUMs/ha. To minimize the impact of non-
grassland habitat and other objects on our results, we masked out the
non-grassland habitat, human-made structures, and stock ponds, and
buffered all fences and roads across the analyzed pastures.

2.2.3. Lidar data
Airborne lidar data were collected by Quantum Spatial on July 4th -

July 10th, 2015 using a Leica ALS70. The Lecia ALS70 uses a near in-
frared (1064 nm) laser with a beam divergence of 0.15 mrad. The dis-
crete return lidar dataset averaged 9.29 points per square meter with a
fundamental non-vegetated vertical precision of 3.7 cm, vertical
bias of −1.3 cm, a horizontal accuracy of 5.4 cm, and an average pulse
footprint diameter of 32 cm, with a 1400 m survey altitude and a field
of view ± 14° from nadir (Quantum Spatial Technical Report). The
vendor provided point and laser return intensity raster data in the
Oregon Statewide Lambert projection with a horizontal datum of
NAD83 (2011) and a vertical datum NAVD88 (Geoid12A). We pro-
cessed the lidar data in its native projection to match the vendor data
and end user needs. There was high variability in pulse densities at the
1 m scale across the study area which biased the data (Fig. S1); there-
fore, we resampled the point cloud to create an even point density for
biomass mapping using CloudCompare software (CloudCompare v2.6.2
2017). To do this, we fit a Delaunay 2.5D best fitting plane to the
vendor-provided point data, then sampled this plane to the chosen
density of 0.85 points per square foot (9.15 points per square meter).
This step was performed because initial analysis using the raw lidar
point clouds produced maps with notable striping (see discussion for
more detail, and Fig. S1).

2.3. Modeling bunchgrass biomass with lidar data

2.3.1. Variable creation from lidar data
2.3.1.1. Lidar-derived volume metric. Following Greaves et al. (2015)
and (2016), we created a canopy volume raster using an optimization
algorithm that produces a set of gridded ground and canopy surfaces
based on user-defined parameters (Eitel et al., 2014; Greaves et al.,
2015). We aggregated the canopy volume raster data to 1.0668 m
(3.5 ft) maintaining the imperial state plane units corresponding to the
vendors units and the end-users' needs, and to minimize the errors
introduced by projecting raster data between datums (For more
detailed information on the creation of the volume metric, see
supplementary text 1).

2.3.1.2. Canopy lidar metrics. Using the ground points generated during
creation of the canopy volume metric, we normalized the point cloud to
compute a set of common lidar metrics at the 1.0668 m (3.5 ft) scale.
Using all the points greater than 2 cm height we computed the
minimum, maximum, mean, standard deviation, and 25th and 75th
percentiles of heights. We also computed total return and canopy
density (Table 1).

2.3.1.3. Intensity data. Zonal means of the vendor-provided 0.3048 m
(1 ft) intensity data were computed for each 1 m2 field vegetation
quadrat. We computed the mean and max intensity for each of the 65
quadrats (Table 1, dataset: Intensity). The vendor performed minimal
normalization accounting for the pulse distance, angle and channel-
balancing using a propriety approach (pers. comm. with Quantum
Spatial).

2.3.1.4. Lidar derived topographic metrics. Using the ground surface
rasters obtained from the canopy volume creation, we created several
topographic metrics at the 1.0668 m scale, including slope, aspect,
curvature and the SAGA wetness index (Boehner et al., 2002) (Table 1).
These variables, associated with topography, were included due to their
potential influence on soil moisture, vegetation production (Gessler

et al., 2000) and vegetation type (Fu et al., 2004) (Table 1, dataset:
Topographic).

2.3.2. Model creation using Random Forests
Following methods described in Greaves et al. (2016), we used

Random Forests (Breiman, 2001) implemented in the randomForest
package (Liaw and Wiener, 2002) in R (R Development Core Team,
2016) to determine what predictors most accurately estimated biomass.
When run in regression mode, Random Forest provides model estimates
by averaging the predictions across many decision trees, which are
constructed based on a random selection of the input data, as well as a
random selection of the predictor variable used at each splitting node
(Breiman, 2001). We tested seven different predictor sets to model
biomass: 1) canopy, 2) topography (topo), 3) intensity, 4) ca-
nopy + topo, 5) canopy + intensity, 6) intensity + topo, and 7) ca-
nopy + intensity + topo. To reduce the possibility of overfitting the
models, for each predictor set we removed the highly correlated pre-
dictor variables (Spearman's rank r > 0.90). To further limit the pre-
dictor variables within each of the seven sets of predictor sets, we ran
the model selection tool in the rfutilities package (Murphy et al., 2010)
1000 times and only included the variables which were selected in the
majority (i.e. greater than 500) of model runs for subsequent Random
Forest modelling. The best Random Forest models generated from each
predictor set were then compared using the Random Forest pseudo R2,
as well as the r-squared values between the predicted and observed
estimates and the associated root mean squared difference (RMSD)
(Pineiro et al., 2008) metrics of the out-of-bag training samples.

2.3.3. Biomass mapping and summary statistics at the pasture scale
Using the Random Forest model that minimized the RMSD, we

employed the AsciiGridPredict Tool in the R package ‘yaImpute’
(Crookston and Finley, 2008) to predict biomass at 1.0668 m pixel re-
solution across the study area. For each pasture across the study area
that met our selection criteria (see section 2.2.2) we computed sum-
mary statistics for biomass within each pasture, including the mean, the
10th, 25th, 50th, 75th, and 90th percentiles, the standard deviation,
and the coefficient of variation (CV).

2.4. The effect of spatial resolution on measures of heterogeneity

2.4.1. Upscaling the 1.0668m biomass data to coarser scales
To provide biomass estimates at varying resolutions, we aggregated

the 1.0668 m masked biomass rasters for each pasture area to coarser
spatial resolutions: 3 m, 5 m, 8 m, 20 m, and 30 m pixel sizes. We kept
the geographic extent of the analysis areas fixed and consistent with the
pasture areas, as this is the size related to grazing management. To do
this, we re-projected the 1.0668 m biomass data from the NAD1983
2011 Oregon Statewide Lambert International Feet to WGS1984 UTM
Zone 11. Next, we resampled the 1.0668 m data to 1 m using the bi-
linear approach and then aggregated by averaging the 1 m data to the

Table 1
Lidar-derived variables used to model aboveground biomass.

Data Type Variable Details

Canopy Vol Canopy volume (Greaves et al., 2015, 2016)
Canopy H_Mean Average height
Canopy H_Std Standard deviation of height
Canopy H_Max Max height
Canopy Tot_Returns Number of all lidar returns
Canopy Canopy_Dns Points above 2 cm divided by all returns
Intensity Int_Mean Mean of vendor 0.3048 cm (1 ft) intensity raster
Intensity Int_Max Max of vendor 0.3048 cm (1 ft) intensity raster
Topographic SWI Saga Wetness Index SAGA GIS
Topographic Slope ArcMap Spatial Analyst Package
Topographic Aspect ArcMap Spatial Analyst Package
Topographic Curve ArcMap Spatial Analyst Package
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five coarser spatial resolutions. The coarser-scale spatial resolutions
(pixel sizes) were selected to align with currently available short-wave
infrared data from satellites such as WorldView-3 (4 to 8 m), Sentinel-2
(20 m), and Landsat (30 m) because of the importance of these wave-
bands in quantifying grassland vegetation in this system (Jansen et al.,
2018, 2016).

2.4.2. Variogram stats
The biomass raster data for each pasture and pixel resolution were

used to compute semivariograms to explore spatial measures of het-
erogeneity. The computation of the semivariogram takes the form:

=
=

+h
n

z s z s( ) 1
2

( ) ( )
i

n

i i h
1

2

where h( ) is the semivariance for the distance bin h, z is the value of
the biomass variable at two locations si and si+h, with h signifying the
distance between each pair and n is the number of pairs of sampling
locations across each lag (or bin) h. For each pasture area we fit the-
oretical models consisting of the exponential, spherical, and linear form
to the empirical semivariogram using the GSTAT package (Pebesma,
2004). We used the output from the exponential models for subsequent
analysis, as these decreased errors across the majority of pastures and
resolutions. From the theoretical semivariograms the sill, nugget, and
range were computed. The sill refers to the point at which the variance
no longer increases with increasing lag distances (variance beyond the
range); the range is a measure of spatial dependence across distance,
signifying the distance at which the variable in question is no longer
autocorrelated, and provides an indicator of patch size (Townsend and
Fuhlendorf, 2010). The nugget is the intercept along the y-axis re-
presenting variability or sampling error within the zero lag distance
(Fortin and Dale, 2005; Sadoti et al., 2014; Townsend and Fuhlendorf,
2010; Western et al., 1998). From the sill, nugget, and range metrics we
calculated the magnitude of spatial heterogeneity (MSH) (Lane and
BassiriRad, 2005; Lin et al., 2010). The MSH is calculated by dividing
the spatially structured variation (the sill minus the nugget) by the total
sample variation (the sill) (Lane and BassiriRad, 2005) and ranges from
0-1, with zero indicating no spatially structured heterogeneity and one
indicating highly structured heterogeneity (Virk and Mitchell, 2015).
We also calculated the nugget to sill ratio: (nugget semivariance/total
semivariance)*100 (Cambardella et al., 1994).

2.4.3. The effect of spatial resolution on measures of heterogeneity
To visualize how varying resolutions (pixel size) influenced the

measures of spatial heterogeneity (i.e. sill, nugget, range, etc.), we
created boxplots for each semivariogram-derived metric by pixel size.
To test which resolutions produced significantly different measures of
heterogeneity, we computed pairwise Mann-Whitney U rank-sum tests
between all possible pairs of pixel sizes. We selected a non-parametric
test because many of the semivariogram metrics at the varying pixel
sizes did not fit a gaussian distribution. We only performed the multiple
comparison Mann-Whitney U tests when the semivariogram-derived
metric met the assumption of homogeneity of variance across all groups
as tested with the Fligner-Killeen test. Statistically significant p-values
were adjusted using the Bonferroni correction.

2.5. The effect of grazing on biomass statistics and measures of
heterogeneity across varying resolutions

We explored the effect of grazing on pasture summary statistics and
semivariogram-derived measures of heterogeneity using Spearman rank
correlations, simple linear models and quadratic models. Because some
initial linear models did not have normally distributed residuals, we
transformed our predictor variables with log, reciprocal and square root
transformations to determine whether these transformations helped in
meeting the assumptions of a linear model. The effect of grazing was
tested across each of the six resolutions separately and considered
significant at α = 0.05.

3. Results

3.1. Field measured aboveground biomass and vegetation height data

Across the 65 1 m−2 quadrats sampled in 2015, the average field
biomass was 268.9 g m−2 with a range of 0 g m−2 to 1213.9 g m−2

(Table 2). The average mean height was 12.9 cm with a mean height
range of 0 cm to 45.5 cm. The average max height across the 65 sites
was 29.5 cm and ranged from 0 cm to 91 cm. Spearman rank correla-
tions between biomass and the measures of vegetation structure (height
mean and height max) were significant and strongly related
(r2 > 0.70) (Fig. 2).

3.2. Modeling grassland biomass with lidar data

3.2.1. Random Forest modeling for aboveground biomass estimates
Using the rfutilites model selection tool to determine what pre-

dictors in each predictor set were important (i.e., selected more than
50% of the time across the 1000 runs) revealed that only four of the
seven final datasets had a unique set of variables (Table 3). For ex-
ample, the Canopy + Intensity had the same selected variables as the
Canopy + Topo + Intensity, which included volume, max height and
mean intensity. The selected predictors from the canopy-only predictor
set included the canopy volume metric, max height and canopy density.
Slope was the only variable selected in the majority of model runs from
the topographic predictor set. For the intensity predictor set, the mean
and max intensity metrics were significantly correlated (spearman rank
r > 0.90), therefore we included only the mean intensity metric for
variable selection.

When running Random Forest models across each unique predictor
set, the Canopy + Intensity model outperformed all other predictor sets
tested (Fig. 3). The pseudo R2 was 0.59 with an observed versus pre-
dicted R2 of 0.64, a RMSD of 139.4 g m−2, and a bias of −9.7 g m−2.
The Canopy + Intensity model minimized the RMSD errors compared
to the Canopy only model by 34.8 g m−2 and by more than 80.0 g m−2

when compared to the Topo or Intensity only models. The Topo and
Intensity models performed very poorly, having RMSD errors over
220 g m−2.

3.2.2. Lidar-derived biomass maps
The biomass maps produced using the Canopy + Intensity model

visually correspond with landscape features and vegetation patterns
across the study area, with shallow soil areas having low predicted
biomass, and deeper soils and riparian areas having higher predicted

Table 2
Summary statistics for field biomass (g/m2) and vegetation height (cm) data (N = 65).

Field Metric Mean Min Max 10th percentile 90th percentile SD

Aboveground Biomass (g/m2) 268.9 0.0 1213.9 24.7 467.5 262.3
Mean Height (cm) 12.9 0.0 45.5 3.1 20.8 9.6
Max Height (cm) 29.5 0.0 91.0 6.0 45.4 20.3
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biomass (Fig. 4). Areas of low biomass had higher levels of model un-
certainty, with higher biomass areas having much better model agree-
ment, as displayed with the coefficient of variation map (Fig. 4B). For
each pasture area (N = 23), the average estimated biomass was
172.97 g m−2 and ranged from 117.40 g m−2 to 233.27 g m−2. The
average 10th and 90th percentiles across all pasture areas varied with
increasing pixel size, with the finest resolution (1.0668 m) data having
the largest range between these two percentiles, and the coarsest re-
solution (30 m) having the smallest range (Table 4).

3.3. The impact of decreasing spatial resolution on measures of spatial
heterogeneity

The boxplots created for each of the semivariogram-derived metrics
show observably different measures across the six pixel sizes analyzed
(Fig. 5). Only the range and the sill met the assumption of homogeneity
of variance needed for Mann-Whitney U rank-sum tests. Using the
Mann-Whitney U test to compare the distributions of the range statistic
between each pixel size revealed that the 1.0668 m data was different
from all other pixel sizes. Significant differences in the range metric
were found across all other paired comparisons except between the 3 m
and 5 m, the 5 m and 8 m, and the 20 m and 30 m pixel sizes (Fig. 5,
Table S3). The 1.0668 m sill metric was also statistically different from
all other pixel sizes. The sill metric at 3 m, 5 m and 8 m pixel size were
similar (i.e., no significant difference between these pixel sizes) as were
the 8 m, 20 m, and 30 m pixel sizes (Fig. 5, Table S4).

3.4. Identifying remotely sensed derived measures of spatial heterogeneity
and summary statistics most sensitive to grazing intensity, and how this
sensitivity changes with increasing spatial resolution of remotely sensed data

The summary statistics were more sensitive to grazing than the
semivariogram statistics (Table 5 and Table S2) using Spearman rank
correlations, linear and quadratic models. The only semivariogram
statistic sensitive to grazing was the range statistic, and this significant
relationship was exclusively observed across the 1.0668 m to 8 m pixel
resolutions, using spearman rank, linear and quadratic models (Table 5,
Table S2) with the 3 m resolution data having the highest r2 value. The
75th percentile of biomass was significantly related to grazing intensity
across all resolutions except the 1.0668 (Table 5) when all pastures
were included (N = 23), and significant across all resolutions when we
dropped the pasture with the greatest stocking rate (P5) due to its heavy
influence on the summary statistic linear models (N = 22) (Fig. S7 (C
and D) and Table S6). The pasture mean biomass statistic was found to
be significantly correlated to stocking rates using the quadratic model
and when using a linear model if the P5 pasture was dropped. The
coefficient of variation was unique in that the only significant re-
lationships were found with the quadratic models, and none with the
linear models (See Supplemental Fig. S4-S12 for scatterplots).

4. Discussion

4.1. Modelling and mapping bunchgrass biomass with airborne lidar

The variables most useful to accurately quantify grassland biomass
in all the predictor datasets were canopy volume, max height and mean
intensity. Similar to Greaves et al. (2016), the inclusion of the canopy
volume variable was important in the final Random Forest model.

Fig. 2. Relationships between harvest aboveground
biomass and mean vegetation height (a) and har-
vested aboveground vegetation biomass and max
field height (b) across the 65 1-m vegetation plots.
The linear model coefficient of determination (r2), p-
value (p), root mean square error (RMSE) and re-
lative root mean square error (rRMSE) are shown for
each relationship.

Table 3
Variable selection for Random Forest models. The numbers indicate how many times each variable was selected across 1000 Random Forest model runs using the
model selection tool in the ‘rfUtilities’ package. Dashes represent variables not included in the model selection when testing each predictor set. The final Random
Forest model for each predictor set only included predictors selected across more than 500 of the model runs. The bolded predictor sets are plotted in Fig. 3.

Variable Canopy Topo Intensity Canopy + Topo Canopy + Intensity Intensity + Topo Canopy + Topo + Intensity

Vol 1000 – – 1000 1000 – 1000
Tot_Returns 0 – – 0 0 – 0
H_Max 1000 – – 1000 912 – 1000
Canopy_Dns 969 – – 998 0 – 0

SWI – 92 – 0 – 0 0
Aspect – 0 – 0 – 0 0
Slope – 1000 – 284 – 100 0
Curve – 0 – 0 – 0 0

Int_Mean – – 1000 – 1000 1000 1000
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Volumetric measures have also proved useful for estimating vegetation
biomass using ground-based lidar in an agricultural setting (Eitel et al.,
2014), to assess fuel-bed characteristics (Loudermilk et al., 2009) and to
quantify shrub biomass (Greaves et al., 2015). The return intensity
variable also was important in the Random Forest model, likely due to
the increased return intensity of the Leica ALS70 near-infrared laser
(i.e. the 1064 nm wavelength) when contacting green vegetation as
compared to bare ground or rock (Eitel et al., 2016a). Intensity data is
increasingly being applied to quantify vegetation biochemistry (Eitel
et al., 2016b, 2014) and separate wood from foliage to improve leaf
area estimates of trees (Béland et al., 2014, 2011). In this study, the
intensity metric was selected 100% of the time when it was included in
any of the predictor datasets. The max height metric was the other lidar
derived metric selected across all model runs when available as a pre-
dictor variable. It improved Random Forest model results
(RMSD = 139.4 g m−2) when compared to a model excluding it
(RMSD = 148.56 g m−2). In other studies, lidar-derived max height has
been used to assess vegetation height and biomass in short-statured
vegetation communities even though it typically underestimates the
field measures (Kulawardhana et al., 2014). In this grassland system,
due to the close relationship between the field measures of both the
mean and max vegetation height with biomass (Fig. 2), it is logical that
a max height lidar measure would be useful for modeling biomass.
None of the topographic variables were selected more than 50% of the
time when these variables were included with other variable datasets
(Canopy or Intensity). We speculate that this could be due to the high

degree of fine-scale topographic heterogeneity across this system and
that the scale at which we computed topographic measures (1 m) does
not align well with the processes linked to variations in biomass.

Our most accurate Random Forest model (Canopy + Intensity) had
a pseudo R-squared of 0.59 and a RMSD of 139.4 g m−2. This is a
slightly better fit than was achieved in Wang et al. (2017) (R2 = 0.34),
who estimated grassland biomass generated from discrete lidar col-
lected via an UAV, and Kulawardhana et al. (2014) (R2 = 0.33 for total
biomass) who used multiple linear regression to estimate salt marsh
biomass based on discrete return lidar collected by airplane along with
spectral data from NAIP imagery. The estimated biomass across the
pasture areas with a mean of 174.74 g m−2 and a range of 117 g m−2 to
233.27 g m−2 are comparable to results from previous remote sensing
studies in the Zumwalt Prairie that used Landsat data to assess biomass
(Jansen et al., 2018, 2016). The power of these lidar-derived maps is
their ability to capture fine-scale heterogeneity, enabling the visuali-
zation and quantification of fine-scale topographic- and management-
related patterns of vegetation compared with coarse scale data provided
by Landsat (Fig. 6). Results from this study demonstrate that in short-
statured vegetation communities, the canopy volume and Random
Forest modeling approach outlined by Greaves et al. (2016) can be
applied to other short-statured vegetation communities such as grass-
land systems.

The non-uniform overlapping flight lines of the lidar acquisition
caused variability in the point densities, which impacted the canopy
metrics and subsequently the original biomass maps. We attribute the

Fig. 3. Random Forest model results across the four datasets that produced a unique set of predictor variables. See Table 3 for predictors used. The black lines
represent the best fit line, while the dotted red line represents the one-to-one line. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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striping effects to the variability in the overlapping flight lines and end
of scans rather than the intensity data, because the intensity data was
post processed and exhibited no striping effects (Fig. S1:E). For future
studies, lidar acquisition specifically for grassland assessment could be
improved by acquiring a more uniform point cloud across the study
area, with a point density of greater than 9 points m−2. This would
potentially eliminate the need to normalize the point cloud density to
reduce striping effects observed in the biomass (Fig. S1:A-D). Further-
more, this would likely increase modeling accuracies. Our first analysis
attempt with non-corrected point clouds had better accuracy (Fig. S2)
compared to the final models presented here, due to a higher average
point density across the sample biomass quadrats. However, the lower
point density in select places within the study area precluded extra-
polation of these early models across the entire study area.

4.2. The impact of spatial resolution on measures of spatial heterogeneity

The aggregation of the fine-scale data to coarser scales revealed
patterns similar to those described by Jupp et al. (1988); Wiens (1989);
Woodcock et al. (1988); Woodcock and Strahler (1987), in that the
overall variance (i.e., the sill) and fine scale variation (i.e., nugget) of
the data were reduced, and the range increased (Fig. 7). In testing the
differences in the semivariogram measures across all pixel sizes, the
impact of aggregation is significant. This indicates that the semivario-
gram statistics provide different measures as the pixel size changes. In
selecting a plot size or spatial resolution to study a process and phe-
nomena it is important to know how that decision impacts your findings
(Wiens, 1989); here we see that biomass data quantified at the
1.0668 m pixel resolution provides statistically different spatial mea-
sures compared to the spatial measures when aggregated to larger pixel
sizes.

Following ideas in Strahler et al. (1986) on the discrete scene model,
when quantifying grassland vegetation with remotely sensed data, the
resolution would be considered low (i.e. coarse) when compared to a
single leaf or single plant that is smaller than the size of the pixel but
can be considered high (i.e., fine) if related to vegetation patches or
pasture areas that are larger than the pixel being used for analysis.
Using this rationale, our finest-resolution data (i.e., 1.0668 m) is not
high-resolution data at the individual plant level due to pixels con-
taining numerous other spectra (Asner, 2004) such as soil, rock or plant

Fig. 4. Lidar-derived biomass map of the Harsin Pasture predicted from the best RF model at 1.0668 m resolution (A) along with a map of the coefficient of variation
of estimated aboveground biomass (B) and the 2014 NAIP imagery displayed in true color (RGB) (C).

Table 4
Pasture-level modeled biomass summary statistics (N = 23) across the varying
pixel sizes.

Pixel Size Mean Min Max 10th percentile 90th percentile CV

1.0668 173.70 117.20 233.08 66.82 288.54 0.51
3 173.75 117.18 233.21 95.62 254.23 0.37
5 173.82 117.23 233.24 100.54 247.96 0.34
8 173.94 117.38 233.46 104.50 243.20 0.32
20 174.22 117.76 233.75 112.63 234.87 0.28
30 174.21 117.67 234.01 115.71 231.50 0.27
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species at a different phenological stage. This is evident from the large
average nugget and when plotting semivariograms for each resolution
for a single pasture (Fig. 7). The nugget can represent noise, sampling
error, or the within pixel variation. In this study, we reason that the
large nugget with the 1.0668 m data is largely driven by within pixel
variation between bunchgrass vegetation and soil. When we aggregate
these data to coarser scales (3 m to 30 m), we smooth over the canopy
gaps and reduce the variability in biomass, thus decreasing the nugget
(semivariance) captured at fine scales.

Specifically exploring the range data at the finest resolution
(~1.0668 m), we obtained an average range of 78.8 m across all study
pastures. This range aligns with a previous study conducted in a mixed
grassland in Saskatchewan, Canada which used a handheld spectro-
radiometer and found a range of 70 m using a leaf area index metric (He
et al., 2006). From previous remote sensing grassland studies which
determined the optimum pixel size to quantify grassland ecosystems,
both Rahman et al. (2003) and He et al. (2006), point to sampling
theories which state that in order to effectively measure objects, one
must use a pixel size equal to or less than one half the size of the object
(i.e. the range) of interest. Following this rationale, to effectively
quantify aboveground biomass across these pasture areas, a pixel size
less than 40 m would be suitable given our average range of 78.8 m.
Interestingly, when using the coarsest resolution (20 m to 30 m) from
this analysis to quantify how spatial patterns of biomass correlate to
grazing, these data failed to produce significant relationships (See 4.3
below).

4.3. Identifying the measures of spatial heterogeneity most sensitive to
grazing intensity and how this sensitivity changes with increasing spatial
resolution of remotely sensed data

It is well documented that grazing can impact various aspects of
vegetation heterogeneity such as species composition, structure and
biomass (Adler et al., 2001; Fuhlendorf and Engle, David, 2001), yet the
ability to quantify and monitor spatial heterogeneity of vegetation
amount (i.e., biomass, cover, height) with remotely sensed data is de-
pendent on the interaction between the spatial resolution of the data
and the vegetation pattern on the ground. It is known that some re-
solutions will be too coarse to detect vegetation patterns (Wiens, 1989).
In this study, testing the relationship between grazing intensity and the

Fig. 5. Boxplots of semivariogram metrics
from each of the 23 study pastures by pixel
size (N = 23). The bold black lines in the
middle of each colored box represent the
median value (50th percentile), with the
lower and upper limits of the box re-
presenting the 25th and 75th percentile re-
spectively. The whiskers extend to the
smallest and largest values falling within 1.5
times the associated value (lower
value = 25th percentile, upper value = 75th
percentile) of the interquartile range. The
black dots represent outliers. Significant
differences found between the pixel sizes
using the Mann-Whitney/Wilcoxon test for
each semivariogram statistic that met the
assumption of homogeneity of variance
(Range and Sill) are indicated with different
letters. Statistic Abbreviations are as follows:
MSH = magnitude of spatial heterogeneity
and NSRatio = nugget to sill ratio.

Table 5
Regression model results between pasture level summary and spatial statistics
and stocking rate (N = 23). The coefficients of determination values (r2) that
are significant at α = 0.05 are shown in bold with boxes around them. The
italicized underlined values are models that violated assumptions of linear
models. Statistic Abbreviations are as follows: Per10 = 10th Percentile,
Per25 = 25th Percentile, Per75 = 75 Percentile, Per90 = 90th Percentile,
CV=Coefficient of Variation, MSH = Magnitude of Spatial Heterogeneity, NSR
= Nugget to Sill Ratio. The transformation abbreviations are as follows:
Recip = OLS using a reciprocal transformation on the predictor variable, None-
OLR = one outlier was removed with no transformation performed on the data;
Quad = Quadratic model was used.

Pixel Size
Statistic Transform 1.0668m 3m 5m 8m 20m 30m

Per10 Recip 0.04 0.05 0.05 0.06 0.07 0.08
Per10 Quad 0.23 0.23 0.24 0.24 0.27 0.29
Per10 None-OLR 0.12 0.14 0.14 0.14 0.17 0.18
Per25 None 0.08 0.07 0.07 0.08 0.09 0.09
Per25 Quad 0.27 0.28 0.28 0.28 0.28 0.28
Per25 None-OLR 0.18 0.17 0.17 0.17 0.19 0.19
Mean None 0.13 0.13 0.13 0.13 0.13 0.13
Mean Quad 0.30 0.29 0.30 0.30 0.30 0.29
Mean None-OLR 0.29 0.29 0.29 0.29 0.30 0.29
Per75 None 0.15 0.17 0.18 0.18 0.18 0.18
Per75 Quad 0.26 0.29 0.29 0.29 0.30 0.29
Per75 None-OLR 0.23 0.26 0.26 0.27 0.27 0.26
Per90 None 0.17 0.20 0.20 0.19 0.18 0.17
Per90 Quad 0.23 0.27 0.27 0.27 0.27 0.25
Per90 None-OLR 0.23 0.28 0.28 0.28 0.27 0.26
CV None 0.05 0.03 0.03 0.03 0.05 0.05
CV Quad 0.28 0.26 0.26 0.26 0.27 0.29
CV None - OLR 0.13 0.10 0.09 0.10 0.12 0.12

Range none 0.23 0.40 0.37 0.25 0.01 0.02
Range Quadratic 0.42 0.54 0.45 0.28 0.02 0.07
Range Recip - OLR 0.19 0.29 0.27 0.26 0.139 0.099
Sill None 0.03 0.01 0.01 0.00 0.00 0.01
Sill Quad 0.07 0.10 0.10 0.10 0.09 0.07

Nugget None 0.02 0.00 0.00 0.00 0.03 0.09
Nugget Quad 0.02 0.09 0.09 0.02 0.14 0.12
MSH None 0.02 0.03 0.01 0.00 0.03 0.09
MSH Quad 0.12 0.07 0.03 0.07 0.15 0.12
NSR None 0.02 0.03 0.01 0.00 0.03 0.09
NSR Quad 0.12 0.07 0.03 0.05 0.15 0.12
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semivariogram-derived measures of heterogeneity across the various
pixel sizes revealed that the range statistic was the only spatial statistic
sensitive to grazing. We also observed that the sensitivity of this range
statistic to grazing became weaker as the pixel size increased, so that
the 20 m and 30 m resolutions failed to provide significant relationships
with grazing intensity. Ecologically, this may reflect the decrease in
variance that accompanies aggregation to coarser resolutions. Both
grazing and coarsening of the pixel size resolution has a dampening
effect on the variability of estimated biomass per pixel across the pas-
ture areas in this study area, likely related to the typical size of the large
quantity vegetation patches and the bare ground areas being small, less
than 8 m in size.

The results showing an increase in the variogram-derived range
metric with higher grazing intensity are similar to Scarth and Trevithick
(2017), who observed increases in the range value with increased
grazing using 10 m Sentinel-2 bare ground data in Australia. That the
range value increased with grazing intensity contradicts Virk and

Mitchell (2015), who after two years found that grazing decreased the
semivariogram range statistics. Virk and Mitchell (2015) also found
that the MSH was sensitive to grazing and increased with grazing over
the course of their study, whereas our results showed that this metric
was not sensitive to grazing intensity at any scale. These differences are
likely due to underlying differences in vegetation heterogeneity,
grazing distribution and intensity (Adler et al., 2001), and the study
length. Virk and Mitchell (2015) tracked vegetation across multiple
years to monitor the change in heterogeneity with varying levels of
grazing. Here we only use one year of data, which is not ideal, espe-
cially in grassland systems that can experience large year-to-year var-
iations in production (Briske et al., 2015). Another influence could be
that Virk and Mitchell (2015) modeled live biomass using NDVI, which
can be impacted by standing dead vegetation and litter in natural
grassland systems (Jansen et al., 2018; Xu et al., 2014). Mapping the
pattern of green vegetation only could potentially increase measures of
heterogeneity.

Fig. 6. Grassland biomass at varying pixel sizes (1.0668 m, 3 m, 5 m, 8 m, 20 m, and 30 m), produced by aggregating 1.0688 m lidar derived biomass data for the
Zumwalt Prairie in northeast Oregon.
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Following Adler et al., 2001 there are two ways grazing decreases
heterogeneity:1) when grazing is guided by the vegetation pattern and
selective grazing decreases contrast between vegetation types or 2) with
patch or homogeneous grazing, when the grazing pattern is weaker
than the vegetation pattern (Adler et al., 2001). From this study, we
reason that selective grazing across the study area decreases the con-
trast in vegetation biomass, leading to reduced heterogeneity with
greater stocking rates. That the range statistic was not significantly
related to grazing at the 20 m and 30 m scale shows how the spatial
scale used to study a pattern or process may influence the interpretation
of results, and that these processes can be expressed differently de-
pending on the scale at which they are studied (Townsend and
Fuhlendorf, 2010). In other words, while the 30 m scale may be suitable
to monitor vegetation biomass and a general change in quantity, this
scale is not sensitive enough to detect changes in the spatial vegetation
pattern (i.e. spatial heterogeneity measured with a spatial statistic)
induced by grazing in this grassland.

4.4. Implications for management and future analysis opportunities

The maps created using the Random Forest model provide the first
landscape-scale maps of grassland biomass derived from airplane-
gathered lidar in this grassland system and, to our knowledge, in any
short-stature vegetation grassland. Fine-scale vegetation datasets such
as this one can provide spatially explicit information on vegetation
structure and biomass which can then be related to habitat require-
ments for critical species (Boelman et al., 2016; Vierling et al., 2008).
They also provide data to better understand how management drivers
impact vegetation biomass and structure at fine scales. For example, in
this grassland system, grazing was associated with an increasing range
metric, suggesting a reduction in fine-scale biomass heterogeneity. This
result can inform conservation and management actions which seek to
increase habitat heterogeneity. Linking semivariogram-derived range

metrics to other biological processes, such as erosion or weed invasion,
as well as habitat requirements for wildlife species such as birds, would
further reveal how this dataset and resulting spatial metrics could be
used to monitor meaningful conservation indicators.

The result that the 20 m and 30 m data, analogous to the spatial
resolution of Sentinel-2 and Landsat respectively, did not produce
spatial heterogeneity metrics sensitive to grazing provides evidence
that these sensors are not best suited to monitor how grazing impacts
aboveground biomass heterogeneity vegetation in this study area. Finer
resolution data are available for purchase (e.g., WorldView-3, Planet
Labs, Inc., RapidEye) which could be used to monitor the effect of
grazing on spatial heterogeneity over time, but in this grassland, prior
research has indicated that a shortwave infrared band is necessary to
achieve maximum accuracy due to a large component of the above-
ground biomass being standing dead or senescent vegetation (Jansen
et al., 2018, 2016). While the spatial heterogeneity metrics were not
sensitive to grazing at coarser resolutions (i.e., 20 m, 30 m), the coef-
ficient of variation (CV) metric was. This metric is often used as a non-
spatial measure of heterogeneity (Adler et al., 2001) and was sig-
nificantly related to grazing across all scales using a quadratic model.
This finding is supported by Johnson et al. (2011), who modeled a
significant quadratic effect of grazing on the structural heterogeneity
across this same study area. In both studies, it was observed that
coefficient of variation increased as grazing increased from no grazing
to moderate grazing and decreased from moderate grazing to heavy
grazing. This finding suggests that Landsat data at the 30 m scale can
provide reliable estimates of this non-spatial heterogeneity measure.

Future studies investigating how grazing management impacts ve-
getation heterogeneity should explore additional spatial statistics at
larger spatial extents and temporal scales. For example, spatial statistics
such as Moran's I could be computed at the pasture and ranch scale over
time, which would contribute to an improved understanding of the
hierarchal and nested nature of this ecosystem, and how land man-
agement impacts heterogeneity at scales relevant to landscape pro-
cesses and management (Fuhlendorf et al., 2012). It could also be in-
formative to analyze the fine scale biomass data with an object-based
approach for mapping vegetation patches as well as for habitat classi-
fication. Ideally, this approach segments spatial data based on mean-
ingful ecological patterns, helping to overcome issues of information
loss due to arbitrarily defined pixel areas (Karl and Maurer, 2010).
Studying processes that interact with grazing to impact vegetation
patterns, such as fire and soil characteristics, is another future area of
interest.

4.5. Conclusion

Lidar data collected by airplane across landscape scales can provide
significant relationships with short-statured grassland biomass for fine
grain mapping (~1 m resolutions) of vegetation pattern at landscape-
and pasture-level scales. Coupling mapped biomass data with grazing
data helps to provide a relevant management-scale understanding of
how grazing impacts biomass heterogeneity or patterns across pastures.
Aggregating the fine-scale biomass data to increasingly coarser pixel
sizes reveals how the spatial resolution of data impacts our ability to
quantify spatial patterns of processes under question. This information
in turn informs the selection of the most appropriate sensor/spatial
resolution to quantify or monitor a desired phenomenon or ecological
process. For example, when using semivariograms to study spatial
heterogeneity, we found that high-resolution datasets with pixel sizes
between 1 m and 8 m are needed to monitor the effect of grazing on
vegetation pattern at peak biomass across this short-statured, highly
heterogeneous grassland. Ecologically, we found evidence that grazing
decreases the spatial heterogeneity of aboveground biomass within this
grassland system, and we identified the spatial resolution (1 m to 8 m)
at which the process is most evident using gridded data. This is an
important finding for future research and monitoring as well as current

Fig. 7. Empirical semivariograms for the Harsin pasture using the six different
increasing pixel resolutions.
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management practices which seek to increase heterogeneity in this and
other similar grassland ecosystems.
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