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Vegetation, topography and daily weather influenced
burn severity in central Idaho and western Montana forests
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Abstract. Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (ANBR) is
useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across
large forest fires are both poorly understood and likely to be different than those influencing fire extent. We
related dNBR to environmental variables including vegetation, topography, fire danger indices, and daily
weather for daily areas burned on 42 large forest fires in central Idaho and western Montana. The 353 fire
days we analyzed burned 111,200 ha as part of large fires in 2005, 2006, 2007, and 2011. We expected that
local “bottom-up” variables like topography and vegetation would influence burn severity, but that our use
of daily dNBR and weather data would uncover stronger relationships between the two than previous
studies have shown. We found that percent existing vegetation cover had the largest influence on burn
severity, while weather variables like fine fuel moisture, relative humidity, and wind speed were also
influential but somewhat less important. Our results could reflect contrasting scales of predictor variables,
as many topography and vegetation variables (30-m spatial resolution) accounted for more of the
variability in burn severity (also 30-m spatial resolution) than did fire danger indices and many daily
weather variables (4-km spatial resolution). However, we posit that, in contrast to the strong influence of
climate and weather on fire extent, “bottom-up” factors such as topography and vegetation have the most
influence on burn severity. While climate and weather certainly interact with the landscape to affect burn
severity, pre-fire vegetation conditions due to prior disturbance and management strongly affect vegetation
response even when large areas burn quickly.
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INTRODUCTION al. 2009). Although large fires account for most of
the area burned, garner the most media attention,

Fires are globally important disturbances that have the costliest economic impacts (Butry et al.
affect ecosystems (Bond et al. 2004, Bowman et 2001), and are socially important (Lannom et al.
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2014), not all land area burned in large fires is
severely burned (Birch et al. 2014). Instead, many
large fires cause variable ecological effects
(Lentile et al. 2007), with high severity areas
having long-term effects on ecosystem structure
and composition (Kashian et al. 2006, Goetz et al.
2007, Romme et al. 2011). However, the environ-
mental controls on burn severity across large
forest fires are poorly understood, limiting our
ability to model future burn severity.

Burn severity as inferred from remotely sensed
imagery has been widely used to evaluate fire
effects on ecosystems (Smith et al. 2005, 2010,
French et al. 2008, Soverel et al. 2010, Morgan et
al. 2014). Satellite-derived time series have been
used to evaluate ecosystem recovery from fire for
many science and management applications
(Morgan et al. 2001, Diaz-Delgado et al. 2003,
Kotliar et al. 2003). Proportion of the total fire
area burned severely has been inferred from
satellite imagery to evaluate whether fires have
become more severe in recent decades (Miller
and Safford 2012, Mallek et al. 2013), whether
fires have been more severe under different land
management (Miller and Urban 2000, Wells
2013), and to characterize possible changes in
wildlife habitat (Hanson and Odion 2013). We
define burn severity as the degree of ecosystem
change due to fire (Morgan et al. 2001, Key and
Benson 2006), where ecosystem change incorpo-
rates changes in overstory vegetation, understory
vegetation, or soil strata (Van Wagtendonk et al.
2004, Lentile et al. 2006, French et al. 2008,
Morgan et al. 2014). The differenced Normalized
Burn Ratio (dNBR) spectral index of burn
severity calculated from pre-fire and one year
post-fire satellite imagery has been correlated
with field-based assessments of burn severity
(Van Wagtendonk et al. 2004, Cocke et al. 2005,
De Santis and Chuvieco 2009, Jones et al. 2009),
and with percent tree mortality in forested areas
(Cocke et al. 2005, Hudak et al. 2007, Lentile et al.
2007, Smith et al. 2010).

Environmental conditions influence fire
growth, occurrence, and extent, but the degree
to which they influence burn severity is unclear.
Most prior climate-fire analyses have shown
significant correlations between annual burned
area and summer drought in the northern US
Rockies (Littell et al. 2009, Abatzoglou and
Kolden 2013) with widespread fires occurring
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during warm, dry summers that followed warm
springs (Heyerdahl et al. 2008, Morgan et al.
2008). The environmental factors influencing
burn severity may be distinctly different than
those influencing fire occurrence and extent
(Romme and Knight 1981, Christensen et al.
1989, Heyerdahl et al. 2002, Dillon et al. 2011).
Burn severity can be highly variable, even when
large areas burn in a single 24-hr period (Birch et
al. 2014). Jones et al. (2009) found that above
average summer high temperatures and low
precipitation were important in growth and
severity of the largest fire on record for the
North Slope of Alaska. Holden et al. (2009) found
that north-facing slopes were more likely to burn
severely than other aspects in New Mexico.
Dillon et al. (2011) found that the probability of
high burn severity was influenced by topography
more than climate even in years of widespread
fires when climate was more influential than in
other years.

The US northern Rockies area is well-suited for
examining how multiple factors interact to
influence burn severity. This area provides a
wide variety of forested vegetation, topographic,
settings, and environmental conditions that have
experienced wildfires in recent years. The north-
ern Rocky Mountains have accounted for the
majority of area burned in the western US for the
last several decades (Westerling 2008) and the
area is considered vulnerable to future climate-
driven increases in the frequency of large fires
(Westerling et al. 2006, Littell et al. 2009,
Spracklen et al. 2009, Moritz et al. 2012). Burn
severity is highly variable here (Dillon et al. 2011)
and important to people and many ecosystem
processes influenced by fire (Morgan et al. 2014).

Our objective was to understand how burn
severity as indicated by dNBR varies with
topography, vegetation, fire danger indices, and
daily weather. We build on the study of Dillon et
al. (2011) who analyzed high burn severity across
six ecoregions of the western US and found that
topography exerted more influence on burn
severity than fire weather or climate. Their fire
weather data, however, were only resolved to a
10-day summary around fire detection dates, and
their climate data reflected monthly or seasonal
values coincident with or antecedent to fire
detection dates. Here we analyze continuous
dNBR values (not just high severity) resulting
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from daily areas burned relative to weather and
fire danger for the specific day each area burned.
We expected that (1) that “bottom-up” variables
such as topography and vegetation will still have
a large effect on burn severity and post-fire
vegetation response, (2) that using burn severity
and weather data matched to the same time
period will result in stronger relationships
between the two and advance our understanding
of how weather influences severity, and (3)
topography and vegetation will influence burn
severity even when we focus only on the largest
daily areas burned in the largest fires even as
these fires burned under extreme weather.
Understanding the environmental factors influ-
encing burn severity, especially for large fires, is
critical to projecting the degree to which ecolog-
ical effects of fire will change with climate.

METHODS

Study area

We examined 42 forest fires in central Idaho
and western Montana that burned in 2005, 2006,
2007 and 2011 (Fig. 1). (See Appendix A for full
list of fires and dates of progression mapping)
Our study area includes diverse forest types,
topography, weather and climate and has had
many fires in recent decades (Westerling et al.
2006, Morgan et al. 2008) with varying burn
severity (Dillon et al. 2011).

Burn severity data

Continuous dNBR data were obtained from
the Monitoring Trends in Burn Severity project
(MTBS) (Eidenshink et al. 2007). The MTBS
project has mapped dNBR for all large fires in
the United States (>405 ha in the western US;
>202 ha in the eastern US) from 1984 to present
from 30-m Landsat satellite sensor data. We
selected fires from the MTBS dataset that also
had daily infrared (IR) fire progression maps
available for at least five consecutive days. We
adjusted the raw dNBR values obtained from the
MTBS project by the dNBR offset value (Key
2006). The dNBR offset value represents the
average difference in NBR values between
relatively homogeneous unburned areas of pre-
and post-fire satellite scenes. This value accounts
for spectral changes that occurred from factors
other than fire, such as phenological differences
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(Key 2006).

Infrared perimeter mapping

Aerial infrared perimeter mapping is conduct-
ed on many wildfire incidents to measure fire
size and growth. Following methods established
by Birch et al. (2014), we required continuous fire
progression maps of five or more days per fire
and buffered perimeters by 30 m in order to
remove areas with inconsistent perimeters. We
also removed areas of fire growth less than 0.09
ha, the area of a single Landsat pixel (30 m X 30
m), which allowed us to further stipulate the area
was actual fire growth. The 30-m IR perimeter
buffer resulted in a total of 136,634 ha (80% of
total IR area) and 7,216 individual polygons
representing daily areas burned. Loss of areas
less than 0.09 ha totaled 13 ha (<0.0001% of
buffered area). For the 42 fires we were able to
establish 394 days of area burned.

Random sample point selection

Using the IR perimeter maps from the 42
selected fires we chose random points (Fig. 2) for
which we obtained daily weather and fire danger
indices, topographic measurements, and vegeta-
tion characteristics. We further constrained our
sampling to 111,397 ha (81% of buffered area
>0.09 ha) of forests using the LANDFIRE
Existing Vegetation Type geospatial layers (Roll-
ins 2009; see Appendix B for a full list of sampled
forested Existing Vegetation Types). Existing
Vegetation Type represents the dominant vege-
tation at a specific point in time, so we used
LANDFIRE Version LF2001 for all fires from 2005
to 2007, and LANDFIRE version LF2008 for 2011
fires. We randomly selected sampling points
across all 42 fires with a minimum distance of
127.5 m between points. We established the
minimum distance of 127.5 m as it is the rounded
minimum distance required such that no two
points were sampled from adjacent Landsat
pixels. Moreover, setting this minimum sampling
distance precluded the confounding factor of
spectral mixing between pixels that are adjacent
to one another, known as the adjacency effect
(Otterman and Fraser 1979, Jianwen et al. 2006).
Random points that fell within areas of MTBS’s
“Non-processed Area Masks” were removed
from analysis; these areas are generally associat-
ed with Landsat 7 scan-line corrector error lines,
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Fig. 1. Study area of central Idaho and western Montana showing the 42 fires from 2005 to 2007 and 2011 used

in this study.

cloud cover, cloud shadow, and other data gaps.
The minimum sample distance and Non-pro-
cessed Area Masks eliminated the ability to
sample from some of 394 possible IR progression
days, missing 41 days and 127 ha (<0.001% of
forested burned area). Of these 41 days, only five
days were not sampled on another fire. Ulti-
mately, we sampled 10,819 points in 353 fire days
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within a total daily forested area burned of
111,270 ha.

Topographic, vegetation, daily weather
and fire danger indices

For each of the randomly located points, we
obtained data for a suite of topographic, vegeta-
tion, daily weather and 30-yr percentile weather
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Fig. 2. Example of forested daily areas burned and randomly sampled points that occurred on the Burnt Strip
Mountain Fire in central Idaho on September 2, 2005. Areas were delineated by use of daily IR perimeter maps.

predictor variables. Percentiles help us to locally
normalize variation. We initially identified 47
predictors as potentially influential to burn
severity based on the literature. (See Appendix
C for full list of 47 predictors.) We removed 12
predictor variables that were highly correlated
(Spearman’s Rho > 0.75) with another variable.
Any predictor variable that was highly correlated
with two or more variables was first to be
removed, any weather variable that was corre-
lated with its percentile was removed.

Using the sampled values of our 35 uncorre-
lated predictor variables, and dNBR as the
response, we performed a preliminary Random
Forest analysis (see next section) to determine an
optimal set of predictor variables. We identified
the optimal model (i.e., fewest predictors that
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could best predict changes in dNBR) by running
a model selection routine that tested the perfor-
mance of models with successively fewer predic-
tors as done by Dillon et al. (2011). This resulted
in an optimal set of 20 predictor variables, a
summary of which follows.

Topographic.—We examined five topographic
measurements from a 30-m Digital Elevation
Model (DEM). We used two types of topographic
information: (1) slope and aspect and (2) slope
position and curvature. Indices of slope and
aspect were: Percent Slope, Heat Load Index
(McCune and Keon 2002), Topographic Solar
Radiation Aspect Index (Roberts and Cooper
1989), and Slope-Cosine-Aspect Index (Stage
1976). The measurement of slope position and
curvature was Topographic Position Index
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(Weiss 2001) calculated in an annular neighbor-
hood with a 2,000-m outer radius and 300-m
inner radius. (See Appendix D for descriptions of
each topographic predictor.)

Vegetation.—Three representations of pre-fire
vegetation characteristics were obtained from the
LANDFIRE Program (Landfire 2013): Fuel Char-
acteristics Classification System, Environmental
Site Potential, and Existing Vegetation Cover.
LANDFIRE geospatial layers provide 30-m pixel
representations of vegetation characteristics
(Landfire 2013). Fuel Characteristics Classifica-
tion System layers represent fire environment
fuelbeds that contribute to fire behavior and
effects (Riccardi et al. 2007). Environmental Site
Potential represents the vegetation communities
that would become established at late or climax
stages of successional development without
disturbance, based on biophysical site conditions
(Landfire 2013). Existing Vegetation Cover as
expressed in LANDFIRE data layers in forested
areas is percent tree canopy cover from 10% to
100%, by 10% intervals. Areas with less than 10%
tree canopy are not considered forested areas by
LANDFIRE. (See Appendix E for descriptions of
all vegetation layers obtained from LANDFIRE.)

Weather and fire danger indices. —Maximum and
minimum temperature and relative humidity,
precipitation, 10-meter wind velocity and
downward shortwave radiation at the surface
were extracted from the surface meteorological
dataset of Abatzoglou (2013) (http://metdata.
northwestknowledge.net) at 4-km spatial reso-
lution. (See Appendix F for descriptions.) In
addition, we calculated Duff Moisture Code and
Fine Fuel Moisture Code from the Canadian
Forest Fire Danger Rating System and the
Energy Release Component and Burning Index
from the National Fire Danger Rating System
using fuel model G (dense conifer). Fire danger
indices comprise timescales that integrate
weather over the previous couple months and
thus represent a hybrid weather-climate metric.

Data were extracted for the 4-km voxels co-
located with each random point, which for
many points within a fire included identical
weather and fire danger indices. Due to the
heterogeneity in these predictors across the
study area as a function of baseline climatology,
we consider these variables as observed and
using a percentile based approach as both
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approaches have shown merit in previous
studies (e.g., Abatzoglou and Kolden 2013,
Parks et al. 2014). While the variables in their
raw form account for geographic differences in
energy and moisture, a percentile-based ap-
proach normalizes for these climatological dif-
ferences and allows for comparisons to be made
across locations relative to historical conditions
and are often used operationally in fire sup-
pression decisions. We calculated percentiles for
each variable to contextualize environmental
conditions at each site using all observations
from July 1 to September 30 (92 days) over the
period of record of observations (1979-2013).
Percentiles were not considered separately for
each day, but rather by pooling all days. (See
Appendix F for descriptions of weather predic-
tors from which climate percentiles were calcu-
lated.)

We also calculated wind-aspect alignment as
the absolute value of aspect direction minus
wind direction, with values of 0 and 360 having
perfect up-slope wind, a value 180 having perfect
down-slope wind, and values in between mea-
suring varying degrees of cross-slope/up-slope
winds (e.g., absolute value of (180 aspect
direction — 359 wind direction) = 179, down-
slope wind; absolute value of (225 aspect
direction — 270 wind direction) = 45, cross-
slope/partial up-slope wind). Slopes less than 10
percent were calculated as having a wind-aspect
alignment of 0, or perfect alignment.

Analysis

We used Random Forest (Breiman 2001), a
machine learning classification and regression
tree analysis method, to study how our topo-
graphic, vegetation, daily weather, and 30-year
percentile weather variables influenced continu-
ous dNBR values. We implemented our analysis
with the Random Forest package (Liaw and
Wiener 2002) for R (R Core Team 2014), using
regression tree models because of our continuous
burn severity response variable. For regression
tree analyses, Random Forest produces a pseudo-
R? calculated as 1 minus the mean-square error
(MSE) divided by the variance that occurs within
the response variable, dNBR (i.e., R?>=1 — MSE/
Variance (ANBR)). MSE is the sum of the squared
residuals divided by the sample size (n=10,819).
We used the pseudo-R? to assess overall model
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performance, and used MSE in evaluating the
relative importance of predictors and selecting an
optimal model. We used nonparametric rank
sum tests (Mann and Whitney 1947) on MSE
values. We evaluated whether the variable group
ranks, topographic vs. vegetation vs. daily
weather vs. 30-year percentile weather, were
non-random. Similarly, we compared the ranks
of the “bottom-up” topography and vegetation
variables relative to the “top-down” daily weath-
er and weather percentile variables.

Similarly to Dillon et al. (2011), we first
identified variable importance rankings using
our full set of 35 uncorrelated predictor variables,
and subsequently found the optimal model using
an iterative model selection routine. Within
Random Forest, the importance of each predictor
variable is assessed by randomly permuting its
values and determining the resultant increase in
MSE; the more influence a variable has on overall
model performance, the more model error will be
increased by permuting its values. Using all 35
variables, we ran five replicate models, each with
1500 regression trees, and used the median
importance measure (increase in MSE) across
all five replicates to rank each variable. Following
the methods of Dillon et al. (2011), we then
formed ten groups of predictor variables based
on similarity of importance values, and tested the
performance of models with successively fewer
predictor variables, starting with all ten groups
and at each successive round eliminating the
least important group. We used five replicates of
five-fold cross-validation at each round of model
selection, again with 1500 regression trees in each
model. We selected the optimal model as the
smallest set of predictor variables that resulted in
overall MSE within one standard error of the
model producing the lowest MSE (De’ath and
Fabricius 2000).

To evaluate the relationship between individ-
ual predictor variables and burn severity, we
examined partial dependence plots from our
optimal Random Forest model. In a regression
tree analysis, Random Forest generates these
plots by calculating, at fixed values across the
range of a given predictor, the average of model
predictions using all combinations of observed
values of other predictor variables (Cutler et al.
2007). Therefore, the partial dependence plots
show how the predicted value of dNBR varies

ECOSPHERE % www.esajournals.org

BIRCH ET AL.

across the range of any given predictor.

We repeated our Random Forest analysis,
including removal of correlated predictors, rank-
ing of variable importance, selection of an
optimal model, and creation of partial depen-
dence plots, for only observation points located
within daily areas burned greater than 600 ha.
We refer to this as the “large fire growth”
analysis, as opposed to the “all points” analysis
that used the full sample of 10,819 points. The
threshold of 600 ha was selected as it corresponds
to the 99.5th percentile of the size of the daily
areas burned and included 4,113 observation
points (38%).

REesuLTs

Values of the continuous dNBR index, indicat-
ing burn severity, ranged from —431 to 1,218
across the 10,819 sample points from 42 fires (Fig.
3). The “all points” optimal model resulted in a
pseudo R* of 0.42. The optimal model included
20 predictors related to topography, vegetation,
and weather and fire danger indices (Fig. 4). The
most important predictor from this analysis was
Existing Vegetation Cover by a wide margin over
the next variable, Slope-Cosine-Aspect Index.
Environmental Site Potential (see Table 1 for
descriptions), Fine Fuel Moisture Code Percen-
tile, and Maximum Relative Humidity followed
closely as the third, fourth, and fifth most
important variables. Partial dependence plots
from the optimal “all points™ analysis show that
higher amounts of Existing Vegetation Cover and
greater values of Slope-Cosine-Aspect Index (i.e.,
steeper slopes and/or more northern-facing as-
pects) were associated with higher predicted
dNBR values (Fig. 5). Likewise, higher values
of dNBR were predicted for cold/wet forest
Environmental Site Potential classes (Table 1),
90th percentile or greater Fine Fuel Moisture
Code, and Maximum Relative Humidity values
below ~65% (plots not shown). Unfortunately,
although the Random Forest analysis reflects all
of the variables included together, the partial
dependence plots are of one variable at a time, so
we cannot show the interactions clearly.

For the “large fire growth” analysis, reflecting
areas of daily fire growth above the 99.5th
percentile in size, the optimal model had a
pseudo-R? of 0.49. In addition to the 12 predictor
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Fig. 3. Differenced Normalized Burn Ratio pixel values for all 10,819 randomly selected points (white bars) and
4,113 points within large areas of fire growth (gray bars). Bin size = 100.

variables removed from the “all points” analysis,
we removed three more highly correlated vari-
ables (Spearman’s Rho > 0.75) from the “large
fire growth” analysis: burning index, duff mois-
ture code (raw), and duff moisture code (percen-
tile). (See Appendix C.) Daily areas burned
greater than 600 ha still accounted for 4,113
observation points (38% of total) and 52,155 ha
(47%) of daily areas burned as determined from
IR perimeter mapping. Of all 7,216 daily areas
burned, only 37 (0.005%) were larger than 600 ha.
The Random Forest optimal model indicated just
eleven predictors that could best predict dNBR
(Fig. 6). Similar to the “all points” analysis,
Existing Vegetation Cover provided the largest
influence on dNBR, with Slope-Cosine-Aspect
Index a distant second. The third and fourth
predictors were different: Wind Speed Percentile
and Fuels Characteristics Classification System,
respectively. Thus, our findings support our
expectations that “bottom-up” variables such as
topography and vegetation strongly influence
burn severity, even when we focus only on the
largest daily areas burned in the largest fires.
Since the top two predictor variables were the
same for the “all points” and “large fire growth”
analyses, partial dependence plots allow for
comparison between the two analyses (Fig. 5).
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The plot for Existing Vegetation Cover shows
that for any given amount of vegetation cover,
our models always predict higher severity on
“large fire growth” days relative to the full
sample of daily areas burned. This difference is
relatively small at low vegetation cover amounts,
but increases slightly above about 30-40% cover.
The plot for Slope-Cosine-Aspect Index shows a
somewhat similar pattern, with higher severity
always predicted on “large fire growth” days
relative to all daily areas burned, but predicted
severity becomes higher on northerly and/or
steeper slopes in the “large fire growth” model.
Vegetation Group variable importance ranked
significantly higher than other variables groups
(P < 0.10). Further, the “bottom-up” factors,
including vegetation and topography, ranked
higher than “top-down” variables including
daily weather and weather percentiles (P =
0.067, Mann-Whitney test on MSE values).

DiscussioN

The environmental controls on burn severity
include interactions of vegetation, topography,
and both weather and fire danger indices.
Individual partial dependence plots were non-
linear with thresholds for increased influence,
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Fig. 4. Importance rankings of 20 predictors of dNBR as explained in an optimal model provided by Random
Forest regression trees for 10,817 observation points. Predictor importance is measured as the percent increase of

each predictor variable on the total mean square error.

indicating that many factors must reach a specific
condition before having a large influence on burn
severity.

As dNBR is a spectral index that responds
primarily to vegetation change and changes in
soil/char cover (Smith et al. 2005, Hudak et al.
2007), it is not surprising that percent pre-fire
Existing Vegetation Cover would have the largest
influence on burn severity. Likely this reflects the
potential for greater change pre- to post-fire
where pre fire vegetation is abundant, as
identified by Miller et al. (2009). Because we
used dNBR in this analysis (rather than RANBR)
this relationship is probably caused somewhat by
the correlation between pre-fire NBR and the
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dNBR index (Miller and Thode 2007, Parks et al.
2014). We caution against equating dNBR-type
indices with burn severity. The dNBR index has
been shown to significantly correlate via linear
relationships to post-fire live tree cover and litter
weight, but no better than % char and % green
vegetation estimates derived by spectral mixture
analysis (SMA) of the same post-fire images as
dNBR (Smith et al. 2007). Lentile et al. (2009)
presents further evidence that SMA-derived
fractional cover estimates may provide as good
an indicator of post-fire effects as dNBR-indices,
via linear relationships, but be less prone to
misinterpretation as burn severity measures per
se (Morgan et al. 2014).
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Table 1. Environmental Site Potential (ESP) descriptions of the NatureServe terrestrial ecological systems used in

this analysis (NatureServe 2011).

ESP code Description Forest type Partial dependence value
1056 R Mt. Subalpine Mesic-Wet Spruce-Fir Forest Cold 420
1055 R Mt. Subalpine Dry-Mesic Spruce-Fir Forest Cold 412
1167 R Mt. Poor-Site Lodgepole Pine Forest Cold 392
1046 N R Mt. Subalpine Woodland and Parkland Cold 372
1161 N R Mt Conifer Swamp Cold 360
1045 N R Mt Dry-Mesic Mixed Conifer Forest Dry 362
1053 N R Mt Ponderosa Pine Woodland Dry 341
1159 R Mt. Montane Riparian Systems Mesic 384
1166 Middle R Mt. Montane Douglas-fir Forest Mesic 382
1160 R Mt. Subalpine/Upper Montane Riparian Mesic 360
1047 N R Mt Mesic Montane Mixed Conifer Forest Mesic 335
1154 Inter-Mountain Basins Montane Riparian Systems Mesic 333
1062 Inter-Mt. Basins Mahogany Woodland Mesic 332
1011 R Mt. Aspen Forest and Woodland Mesic 330
1106 N R Mt Montane-Foothill Deciduous Shrubland Other 346
1139 N R Mt Lower Montane-Foothill-Valley Grassland Other 344
1145 R Mt. Subalpine-Montane Mesic Meadow Other 342
31 Barren-Rock/Sand/Clay Other 333

Topography also influenced burn severity as
indicated by dNBR. Slope-Cosine-Aspect index
(Stage 1976) was the second leading predictor of
dNBR as it likely reflects effective moisture and
productivity of biomass available to burn, as well
as probability of burning. Dillon et al. (2011)
found that topography, including elevation and
2000-m topographic complexity, had the largest
influence on proportion of high severity fire
within large forest fires. We did not include
elevation in our study. Perhaps the influence of
coarse-scale topographic complexity on burn
severity as found by Dillon et al. (2011) but not
in our work reflects the regional scale of their
analysis. All of the topographic predictor vari-
ables in our optimal model were also included in
their models.

All of the polygons representing large daily
areas burned within known 24-hour periods
included multiple topographic facets as they
burned across complex montane topography.
All were part of large fires that burned for
multiple days, and therefore were burning under
relatively extreme conditions, which might sug-
gest that climate and weather would be more
important than topography within large areas
burned. While the top two predictors, Existing
Vegetation Cover and Slope-Cosine-Aspect In-
dex, did not change in importance when we
analyzed only those points in the largest daily
areas burned, wind speed did become more
important (third in the “large growth” analysis
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from 15th in the “all points” analysis).

Partial dependence plots for Slope-Cosine-
Aspect Index indicate that steeper slopes and/or
more northerly aspects are associated with
higher values of dNBR, especially within areas
of large fire growth. This may be because the
vegetation on many north-facing aspects is less
available to burn without the extensive drying
that favors large fire growth. Within our predic-
tor variable of Environmental Site Potential, cold/
wet forest types that are often found on cooler
aspects and higher on mountain slopes were also
associated with higher dNBR values (Table 1).
Similarly, Holden et al. (2009) found that fires on
cool north-facing aspects of the Gila Wilderness
of the southwestern US were more likely to burn
with high severity. Barrett et al. (2010) also found
that aspect influenced burn severity as indicated
by the relative reduction of organic soil layers of
black spruce stands in Alaskan boreal forest.

Our findings support Dillon et al’s (2011)
argument that the environmental controls on
burn severity differ from those determining fire
extent. In contrast to Dillon et al. (2011), we used
weather data and fire danger indices at much
finer spatial and temporal resolutions, providing
a much closer match of temporal and spatial
scales with the observations of daily area burned.
We also analyzed the full range of burn severities
(not just high severity) as indicated by a
continuous dNBR gradient, and focused on fewer
fires within a single ecoregion. As we expected,
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Fig. 5. Random Forest partial dependence plots of Existing Vegetation Cover and Slope-Cosine-Aspect Index

for “all points” (dotted line) and points within “large fire growth” (solid line). Partial dependence plots show the
dependence of the regression function (F; (X;)) on the predictor while holding all others at their mean. Use relative
range of y-axis values to compare between “all points” and “large fire growth™ lines. Existing Vegetation Cover
had about the same influence on burn severity between “large fire growth” and “all points”, while steeper or

more northern aspects had more influence during “large fire growth”.

and similar to Dillon et al. (2011), we found that
while variables reflecting meteorological and
climatic conditions were important, local, “bot-
tom-up” controls reflecting topography and
vegetation more strongly influenced burn sever-
ity.

Wind did not highly influence dNBR-indicated
burn severity in the “all points” analysis, though
it was important for burn severity in the very
largest daily areas burned, likely reflecting the
importance of wind in influencing fire spread
and size. This surprised us because sustained
crown fires that can result in tree mortality are
usually associated with wind (Van Wagner 1977).
Wind is a common factor in both fire extent and
fire behavior (Beer 1991, Bessie and Johnson
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1995) especially in dry fuels (Cruz and Alexander
2010). Neither wind direction nor speed contrib-
uted highly to burn severity in our “all points”
analysis (see Appendix G for analysis using 30-m
scale wind data using WindNinja) even though
both increase fire intensity (Rothermel 1972). For
the 99.5th percentile of daily areas burned, wind
was third in order of variable importance,
consistent with the very high intensity of wind-
driven fires. The lack of wind as a significant
contributing factor to burn severity in our “all
points” analysis is consistent with what Dillon et
al. (2011) found, but it is possible that the spatial
and temporal resolution of our wind data,
though better matched, is still too coarse or
inaccurate, as we don’t know the concurrent
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wind conditions at the time when a particular
point burned. Further, our data on prevailing
wind do not consistently reflect the interaction
between fire and wind. The lack of a relationship
between wind attributes and both RdANBR
(Dillon et al. 2011) and dNBR (this study) could
also be due to the selection of dNBR-type burn
severity metrics; given its applicability is limited
to the spatial scale of the Landsat imagery (i.e., 30
X 30 m pixels) and to only capturing broad
spectral changes in vegetation and soil cover.
Potentially, non-remote sensing measures of burn
severity (e.g., field based measures of the height
of bole char and crown scorch on individual
trees) could lead to improved connections with
wind direction and speed.

Parks et al. (2014) found that burn severity-
inferred dNBR increased with greater fuel
amount and fuel moisture. Thus, we expected
duff and 1000-hr fuel moisture to influence burn
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severity, for they reflect long-term drying which
could result in large areas with a majority of
biomass dry enough to be consumed in fires
(Meyn et al. 2007, Krawchuk and Moritz 2011).
Four of our top eight predictor variables are a
measure of moisture content, whether air (RH) or
vegetation (Duff or Fine Fuel Code). These many
different forms of moisture content may account
for changes in burn severity. Higher moisture
content, especially Maximum RH, which we
interpret as night-time RH recovery, may limit
smoldering combustion (Ferguson et al. 2002)
which influences burn severity (Wade 1993,
Sackett et al. 1996).

Understanding the relative importance of the
drivers of burn severity will require further
research. Environmental variables, especially
wind, interact to influence fire behavior (Bessie
and Johnson 1995). Within our analysis there
were a large number of predictors and many
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potential interactions. Perhaps the lack of dom-
inance by a single group of predictors (topogra-
phy, vegetation, climate, or weather) in
influencing burn severity reflects the different
potential causes of burn severity among the
many different types of vegetation that the fires
burned across and the number of IR progression
days that we were able to use for weather and
climate observations. While dNBR is more often
correlated with overstory tree mortality (Cocke et
al. 2005, Hudak et al. 2007), it also reflects soil
effects (Lewis et al. 2006). Possibly, these different
aspects of burn severity are influenced by
different environmental characteristics and thus
may explain why we see the intermixing of
predictor variable types. Soil burn severity
(Parson et al. 2010) may be more influenced by
duff consumption and soil heating (Ice et al.
2004) while overstory tree scorch and crown
consumption might be tied more to flame length
and intensity (Rothermel 1972). In a recent
review, Morgan et al. (2014) recommend defining
different burn severity indices depending on
purpose; this may help to sort out the influence
of environmental factors on burn severity.

Burn severity may also be controlled by pre-
fire and post-fire conditions such as winter snow
fall and conditions of the next growing season,
which may have greater influence on severity
then do conditions that occurred on the day the
area was burned. Drying and warming trends
days before an area burned also likely influence
burn severity and are reflected in the fire danger
indices. Hudak et al. (2011) found that weather
up to 5 days before was significant in predicting
daily area burned. Further, our fires were all
larger than 405 ha and had escaped initial fire
suppression actions or were managed with
limited suppression. Fires that were contained
or areas of fires that were initially suppressed
may have different factors that contributed to
burn severity. Previous fires that occurred but
were not accounted for in changes in vegetation
data layers may also have a moderating effect on
burn severity (Parks et al. 2013), and prior
disturbances including bark beetles and logging
were not considered. We also did not account for
the effects of fire suppression tactics such as
burnouts or large backfires. These could signif-
icantly alter patterns and intensities of fire
activity (Backer et al. 2004), but detailed data
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on locations of tactics applied is difficult to
obtain. While these tactics are used for public
and firefighter safety and to limit future fire
growth, they may influence both burn severity
and direction of fire spread.

Limitations

We constrained our sampling to forested areas
within the northern Rockies. Areas of non-forest
and those forested areas outside the northern
Rockies may likely have different interactions
between the factors contributing to burn severity
that would be specific to that area, due to
weather or climate, and for that type of ecosys-
tem, due to vegetation characteristics. Our data
were sampled at both 30-m and 4-km spatial
scales which could have influenced our findings.
The coarse scale of our weather and fire danger
predictor variables (4 km) does not represent the
microclimate gradients that might drive burn
severity. Namely, many of the random points we
selected occurred within common voxels thereby
limiting the explanatory power of weather and
fire danger indices to explain heterogeneity in
burn severity. The LANDFIRE (Landfire 2013)
data also contain errors, and we did not have
field data to verify vegetation classification and
cover percentage. At the scale of individual 30-m
pixels, LANDFIRE existing vegetation data may
only be approximately 60% accurate (Swetnam
and Brown 2010), and cannot capture finer-scale
vegetation heterogeneity (<30 m) that may also
drive burn severity. The vegetation data, howev-
er, is at the same spatial resolution as our
topographic predictors and dNBR.

Our topographic predictor variables match the
spatial scale of ANBR (30 m) observations which
may account for them being placed higher in
importance rankings. Random Forest analyses
are more selective of predictors with more
categories and continuous data (Strobl et al.
2007, 2009). Our dataset contains both types of
data, with our analysis showing intermixing of
predictor data types within the importance
rankings.

Implications

In contrast to the strong influence of fire
danger indices, weather, and climate on fire
extent (Littell et al. 2009, Abatzoglou and Kolden
2013), “bottom-up” factors such as topography
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and vegetation have the most influence on burn
severity, even on the largest daily areas burned
on the largest fires. While climate and weather
certainly interact with the landscape to affect
burn severity, pre-fire vegetation conditions due
to prior disturbance and management strongly
affect vegetation response even when large areas
burn quickly. Over a third of the predictors that
influenced forest burn severity are weather and
fire danger indices. This suggests that burn
severity may be somewhat sensitive to projected
changes in climate (IPCC 2013), and to the degree
that climate does change, burn severity may
change as well (Miller et al. 2009). The effects of a
warming climate on burn severity may even be
indirect as suggested by van Mantgem et al.
(2013), if trees become stressed by warmer
temperatures and thus more susceptible to being
killed by fire. However, while fire extent is
strongly influenced by climate and weather, our
findings and those of Dillon et al. (2011) indicate
that the ecological effects of fire are relatively less
sensitive to climate and influenced by vegetation
cover and topography. Over the last century, fire
suppression actions have increased amounts of
both dead and living vegetation throughout the
western United States (Barrett et al. 1991, Arno et
al. 1997) and changed forest composition (Arno
et al. 1995, 1997, Keane et al. 1996). Such changes
in vegetation conditions can lead to uncharacter-
istic burn severity (Quigley et al. 1996, Barbou-
letos et al. 1998), but they can sometimes be
reversed through fire and fuels management that
reduces fuels available to future fires. Informa-
tion about thresholds of burn severity like we see
for vegetation cover and topographic setting (Fig.
5) can inform fuels management across land-
scapes. Based on our results, we would expect
that strategically managing fuels for lower
vegetation cover would lead to less severe fire
effects when fire does occur, especially on the
lower and warmer landscape facets and in dry
forests that experienced frequent fire historically.
On other landscape facets, such as north-facing
slopes, perhaps we can accept severe fires as
there may be operational and ecological (Hutto
2008) reasons why we cannot or should not limit
severity on these sites. Even when large fires
burn large areas in a single day, burn severity
varies (Birch et al. 2014), creating a mosaic that
can provide ecosystem services valued by society.
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CONCLUSION

Vegetation and topography were more impor-
tant influences on burn severity than weather
and fire danger indices for 353 daily areas burned
across 42 large forest fires. Thus our findings
support those of Dillon et al. (2011), though ours
were at daily temporal resolution. While this
could still reflect a mismatch in temporal and
spatial scales between burn severity and topog-
raphy data versus weather data and fire danger
indices, our findings clearly suggest that local
vegetation conditions and topography influence
the ecological effects of fires, even for large forest
fires and for days on which large areas burn in a
short time. If so, as the climatic, vegetation, and
fuels conditions in Northern Rockies forests
change, the implications for burn severity may
be quite different than the implications for fire
extent, with concomitant implications on the fire
and fuels management strategies that could most
effectively foster the ecosystem processes and
ecosystem services valued by society.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Table Al. We analyzed 42 forest fires in a six-year period (total fire days: 353; total area: 111,270 ha). Fires were
selected based on availability of both dNBR burn severity indexes obtained from the Monitoring Trend in Burn
Severity Project and infrared perimeter data.

Fire Year Progression dates analyzed Forested area analyzed (ha)
Beaverjack 2005 9/2-9/4; 9/6; 9/8 732
Burnt Strip Mountain 2005 8/26-9/4 2451
Center 2005 8/26; 8/31; 9/2-9/3 63
Reynolds Lake 2005 9/2-9/3; 9/7-9/8 235
Rockin 2005 9/2-9/3 95
Signal Rock 2005 9/1-9/8 1372
Boundary 2006 9/2-9/5 190
Meadow 2006 9/2-9/5 246
North Elk 2006 9/2-9/5 185
Potato 2006 7/30-7/31; 8/2 908
Red Mountain 2006 8/31-9/4 1099
Cascade Complext 2007 9/7-9/15 4329
Castle Rock 2007 8/20-8/31 8568
Cottonwood 2007 8/24-8/30 1244
Fisher Point 2007 8/11-8/18; 8/25-8/27; 8/29-9/3 2591
Goat 2007 8/10-8/12; 8/25-8/30; 9/7-9/12 2702
Lolo 2007 8/11-8/18; 8/24-8/26; 8/29-8/31; 9/3 1358
LoonZena 2007 8/22-8/30 1610
Monumental 2007 7/27-7/31; 8/3-8/7 2829
Monumental-North Forki 2007 8/26-8/30 2829
Monumental-Yellow§ 2007 8/9-8/14 12985
North Fork 2007 8/11-8/15, 6133
Papoose 2007 8/28-9/3 287
Raines 2007 8/25-8/30 1579
Rattlesnake 2007 7/18-7/22; 8/9-8/15 8999
Red Bluff 2007 8/23-8/30 3317
Riordan 2007 7/26-7/31; 8/3-8/5; 8/7; 8/26-8/30 5395
Rombo Mountain 2007 8/25-8/30 1194
Sandy 2007 7/28-7/31; 8/3-8/4; 8/6 3342
Shower Bath 2007 8/25-8/30 150
Tag 2007 8/7-8/12; 8/28-8/29; 8/31-9/3; 9/7-9/14 5240
Trapper Ridge 2007 7/27-7/28; 730-7/31 405
Wyman #2 2007 8/11-8/18; 8/22; 8/25-8/31; 9/2-9/3 4956
Yellow 2007 8/3-8/7 993
Castro 2011 9/1-9/11 456
Coyote Meadows 2011 9/7; 9/11-9/12 98
Hells Half 2011 9/7-9/8; 9/10-9/14 224
Indian 2011 7/24-7/27 57
Saddle 2011 8/22-8/27; 8/30; 9/1-9/8; 9/10-9/14 9519
Salt 2011 8/27-9/8 5220
Up Top 2011 9/4-9/14 2145
West River Side 2011 8/24-8/29 495

+ Cascade Complex includes North Fork, Monumental, Yellow, Sandy, and Riordan fires after they were mapped as one IR
perimeter.

{Monumental North Fork includes the Monumental and North Fork fires after they were mapped as one IR perimeter.

§ Monumental Yellow includes Monumental, North Fork, Sandy, and Yellow fires after they were mapped as one IR
perimeter.
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APPENDIX B

Table B1. Forested vegetation types within study area.

EVT Code EVT Description

2011 Rocky Mountain Aspen Forest and Woodland

2045 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest
2046 Northern Rocky Mountain Subalpine Woodland and Parkland

2047 Northern Rocky Mountain Mesic Montane Mixed Conifer Forest

2050 Rocky Mountain Lodgepole Pine Forest

2053 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna
2055 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland
2056 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland
2061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland
2062 Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland and Shrubland
2159 Rocky Mountain Montane Riparian Systems

2160 Rocky Mountain Subalpine/Upper Montane Riparian Systems

2161 Northern Rocky Mountain Conifer Swamp

2166 Middle Rocky Mountain Montane Douglas-fir Forest and Woodland
2167 Rocky Mountain Poor-Site Lodgepole Pine Forest

2227 Pseudotsuga menziesii Forest Alliance

2228 Larix occidentalis Forest Alliance

Notes: Forested Existing Vegetation Type (EVT) groups used in selecting areas within progression days. The LANDFIRE

Existing Vegetation Type layer represents the species composition at a given site.

ApPENDIX C

Table CI1. Importance ranking of predictor variables used in Random Forest regression relating topography,
vegetation, and both daily weather and fire danger indices in both raw and percentile values to differenced

Normalized Burn Ratio for “all points” and points within areas of “large fire growth” (> 600 ha). Climate

predictors were calculated as the percentile from 34 year mean for day of observation for summer fire months:

July, August, and September.

Predictor

Importance ranking

Topography (15)
Martonne’s Modified Dissection Coefficient (Evans 1972)
90 m
450 m
810 m
Elevation Relief Ratio (Pike and Wilson 1971)
90 m
450 m
810 m
Topographic Position Index (Weiss 1972)
150 m
300 m
2000 m
Topographic Solar Radiation Aspect Index (Roberts and Cooper 1989)
Compound Topographic Index (Moore et al. 1993)
Heat Load Index (McCune and Keon 2002)
Slope Cosine Aspect Index (Stage 1976)
Slope (Percent)
Aspect (Degrees)
Vegetation (9)
Environmental Site Potential
Fuel Loading Models
Existing Vegetation Cover
Canopy Bulk Density
Canopy Base Height
Existing Vegetation Height
Existing Vegetation Type

All points > 600 ha

* *

+ +

* *
+ +
+ +
* *
9 11
13 +
+ +
14 10
2 2
16 +
+ +
3 5
+ +
1 1
* *
+ +
+ +
+
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Table C1. Continued.

BIRCH ET AL.

Predictor

Importance ranking

Fuel Characteristic Classification Fuelbeds

Fire Behavior Fuel Models, Scott and Burgan 40

Daily Weather and Fire Danger Indices (12)
Maximum Temperature (Degrees Kelvin)
Minimum Temperature (Degrees Kelvin)
Maximum Relative Humidity (Percent)
Minimum Relative Humidity (Percent)
Precipitation (mm)

Downward Solar Radiation (W m2)
Wind Speed (m/s)

Wind Direction (Degrees from North)
Energy Release Component

Burning Index

Duff Moisture Code

Fine Fuel Moisture Code

Daily Weather Percentiles (10)

Maximum Temperature (Degrees Kelvin)
Minimum Temperature (Degrees Kelvin)
Maximum Relative Humidity (Percent)
Minimum Relative Humidity (Percent)
Downward Solar Radiation (W m~2)
Wind Speed (m/s)

Energy Release Component

Burning Index

Duff Moisture Code

Fine Fuel Moisture Code

Other
Wind-Aspect Alignment

6 4
+ +
* *
* *
5 8
8 +
+ +
* *
* *
+ +
17 +
12 *
7 *
* *
10 +
19 +
18 *
* *
20 9
15 3
+ +
11 7
J’_ *
4 6
+ +

Notes: An asterisk indicates a predictor removed due to high correlation with other predictors. A plus sign indicates a

predictor removed for optimal model.

APPENDIX D

Table D1. Descriptions of topography predictors. All values and indices were calculated from a 30-m digital

elevation model.

Predictor

Description

Aspect
Slope
Slope Cosine Aspect Index

Topographic Radiation Aspect Index

Heat Load Index

Compound Topographic Index

Topographic Position Index

Elevation Relief Ratio

Martonne’s Modified Dissection Coefficient

The direction in degrees from north in which the exposure faces.

The percent change of elevation over a specific area.

Calculation indicating combinations of slope and aspect, higher values are
those areas that are steeper slopes or more northern aspects (Stage
1976).

Assigns values to a circular aspect variable. Values of 0 indicate north-
northeast aspects, and a value of 1 to south-south-westerly aspects
(Roberts and Cooper 1989).

Calculates solar radiation so that the highest values are southwest and the
lowest values are northeast and also accounts for steepness of the slope
(McCune and Keon 2002).

Calculates topographic convergence, were higher values represent
drainages and lower values represent ridges or rises (Moore et al. 1993).

Calculates slope position by subtracting a central mean from the
surrounding elevation by use of annular ring sizes. Higher values
indicate ridges, with negative values indicating valleys, and 0 indicating
flat areas (Weiss 1972). Calculated at 1-150, 150-300, and 300-2000 m
annular rings.

Describes how ridged the surface. Small values indicate areas of features
standing above surrounding level surfaces, with high values indicating
level surfaces with depressions. (Pike and Wilson 1971). Calculated at
90, 450, and 810 m radius circles.

Describes terrain dissection within an area. Higher values indicate large
changes in elevation, with lower values indicating small changes in
elevation (Evans 1972). Calculated at 90, 450, and 810 m radius circles.
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APPENDIX E

Table E1. Description of vegetation predictors from LANDFIRE. All vegetation characteristics are represented at a
30-m spatial resolution obtained from LANDFIRE (www.Landfire.gov).

Predictor

Description

Environmental Site Potential

Existing Vegetation Type

Fuel Loading Models
Existing Vegetation Cover

Existing Vegetation Height

Canopy Bulk Density

Canopy Base Height

Fuels Characteristics Classification System

Fire Behavior Fuel Models

The vegetation that could be at a given location; based on NatureServe’s
Ecological Systems classification (NatureServe 2011); represents the natural
plant communities that would become established at late or climax stages
of successional development in the absence of disturbance.

The species characteristics at a given site at the time of classification; derived
from NatureServe’s Ecological Systems classification.

Characterizes wildland surface fuel.

Depicts percent canopy. All vegetation cover was expressed as percent of
ground covered.

The average height of the vegetation. All vegetation height was expressed as
tree height.

The density (kg m™) of available canopy fuel in a stand; generated using
Landsat imagery and biophysical gradients to model bulk density.

The height from the ground to a forest stand’s canopy bottom, measured in
meters and only within forested areas.

Characterizes fuel bed as it might contribute to fire behavior and effects
(Ottmar et al. 2007).

Represent fuel loadings of size classes and fuel types within dead and live
tuels.

APPENDIX F

Table F1. Description of daily weather and fire danger predictors. We obtained weather data from a gridded (4-
km spatial resolution) modeled dataset of surface meteorological data (Abatzoglou 2013, http://metdata.

northwestknowledge.net). The spatially gridded data is a combination of temporal attributes of regional-scale

reanalysis and daily gauge-based measurements.

Predictor

Description

Minimum and Maximum Temperature
Minimum and Maximum Relative Humidity
Precipitation

Wind Speed

Wind Direction

Duff Moisture Code

Fine Fuel Moisture Code

Downward Shortwave Radiation Flux

Energy Release Component (ERC)

Burning Index (BI)

Minimum and maximum temperature measured in degrees Celsius.
Minimum and maximum relative humidity expressed as a percentage.
Daily accumulated precipitation as measured in millimeters.

Mean wind velocity expressed as meters per second.

Average wind direction expressed as degrees from North.

A rating of the average moisture content of loosely compacted duff
layers. This code is calculated using the Canadian Forest Fire Danger
Rating System (Van Wagner 1987).

A rating of the moisture content of litter and other cured fine fuels. The
code is an indicator of the ease of ignition and the flammability of fine
fuels. The code is calculated using the Canadian Forest Fire Danger
Rating System (Van Wagner 1987).

The mean daily shortwave radiation at the surface not accounting for any
topographic factors (W m™2).

Combines the daily temperature, precipitation and humidity that may
represent the amount of energy released at the flaming front of a
fireline (Deeming et al. 1977).

A value related to the contribution of fire behavior to the effort of
containing a fire (Deeming et al. 1977). The value may be divided by
10 to estimate flame length.
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ApPPENDIX G

FINE-SCALE WIND ANALYSIS

WindNinja calculations were obtained from
Zack Holden of the US Forest Service in Missoula
for the 2007 Rattlesnake Fire to test if fine-scale
(30 m) wind direction and speed observations
provided a greater contributing influence to
variations in dNBR. WindNinja is used to
calculate fine-scale, terrain-influenced winds
(Forthofer et al. 2003) for input to wildland fire
behavior models such as FARSITE and FlamMap.
IR perimeter maps for the Rattlesnake Fire from
central Idaho covered 12 days of fire weather.
Using the 127.5 m minimum spacing between
observation points we obtained 1053 wind speed
and direction values. This fire was used as a
small test case to test if adding fine-scale wind
data provided additional explanation for varia-
tion in burn severity. As with the analysis of all
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42 fires, the 30 m analysis and identical 4 km
analysis included removal of highly correlated
predictor variable. Wind-Aspect Alignment mea-
surements were calculated based on wind direc-
tion from both datasets. With no large change in
Mean Square Error values for wind specific
predicator variables (i.e., wind variables didn’t
increase in importance) between 30 m and 4 km
analyses we didnt conduct optimal Random
Forest runs. Using WindNinja data for wind on
the 2007 Rattlesnake fire did not increase the
explained variation in dNBR. A pseudo R-
squared of 0.43 was achieved using WindNinja
30 m data compared to 0.41 for the 4 km data
form this single fire. With the large time
investment requirement to calculate WindNinja
data for the remaining 9,766 randomly located
points, we decided not to include WindNinja
data for our final analysis across all 42 fires.
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