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ABSTRACT: A majority of area burned in the Eastern United States (EUS) results from a limited number of exceptionally
large wildfires. Relationships between climatic conditions and the occurrence of very large-fires (VLF) in the EUS were
examined using composite and climate-niche analyses that consider atmospheric factors across inter-annual, sub-seasonal and
synoptic temporal scales. While most large-fires in the EUS coincided with below normal fuel moisture and elevated fire
weather, VLF preferentially occurred during a long-term drought accompanied by more acute sub-seasonal drought realized
through fuel moisture stress and elevated fire-weather conditions. These results were corroborated across the EUS, with varying
influences of drought, fire danger and fire weather discriminating VLF from other large fires across different geographical
regions. We also show that the probability of VLF conditioned by fire occurrence increases when long-term drought, depleted
fuel moisture and elevated fire weather align. This framework illustrates the compounding role of different timescales in VLF
occurrence and serves as a basis for improving VLF predictions with seasonal climate forecasts and climate change scenarios.
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1. Introduction

The increasing frequency of very large wildfires across the
United States and other regions of the globe has prompted
the need to better examine the factors that contribute to
their occurrence. Very large-fires (VLF) account for a large
percentage of the total area burned, suppression costs and
damages. While VLF result from a myriad of interact-
ing factors, their increased prevalence in recent decades
coinciding with changes in climate such as earlier spring
snowmelt (Westerling ef al., 2006) and increased potential
evaporation during the fire season (Morton et al., 2013),
has prompted the question of the influence of climate
processes on VLF and whether changes in climate have
enabled documented increases in VLF (Dennison ef al.,
2014; Stravos et al., 2014).

Wildfire is linked to atmospheric processes that occur
on distinctly different time scales (Meyn et al., 2007).
While inter-annual moisture variability may enable a large
wildfire season by increasing the landscape flammability,
there is a need to resolve which temporal scales of climate
variability best elucidate the conditions conducive to VLF,
and how these factors vary across different fire regimes.

* Correspondence to: R. Barbero, Department of Geography, University
of Idaho, 875 Perimeter Drive MS 3021, Moscow, ID 83844-3021, USA.
E-mail: renaudb @uidaho.edu

© 2014 Royal Meteorological Society

The literature is currently inconclusive on this topic,
with the occurrence of VLF attributed to inter-annual
variability in moisture (Slocum et al., 2010), sub-seasonal
drought (<3 months) manifested through prolonged and
depleted fuel moisture that increase landscape flamma-
bility (Stravos et al., 2014), and to atmospheric processes
on shorter timescales that may contribute to large fire
growth such as critical fire-weather synoptic patterns
(Pollina et al., 2013). The ‘Black Saturday’ bushfires in
Australia in February 2009 provide an example of the
results of a confluence of multi-scalar weather and climate
events, including preconditioning of fuels via abnor-
mally low spring precipitation that promoted long-term
drought (Cai et al., 2009) and a capstone fire-weather
event that brought fire-weather conditions unprecedented
in the historic record (McCaw et al., 2009). While most
prior analyses have focused on a single timescale or
process, the rarity of VLF suggests the role of compound-
ing atmospheric factors in enabling and driving such
fires.

While Hawbacker et al. (2013) showed that climatology
of temperature and/or precipitation was the most impor-
tant factor contributing to the spatial distribution of the
largest 5% of fires in the United States, most prior stud-
ies in the Eastern United States (EUS) have examined
climate—fire relationships at inter-annual timescales (e.g.
Slocum et al., 2010; Lafon and Quiring, 2012) expressed
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primarily through inter-annual variability in moisture (e.g.
Slocum et al., 2010; Morton et al., 2013). Several chal-
lenges in resolving macroscale climate—fire relationships
in the EUS include widespread land cover fragmentation
and use of prescribed fire in addition to a large proportion
of human-ignited wildfires and poorly defined seasonality
of wildfire occurrence (Malamud e al., 2005). However,
there is still a need to better understand how weather and
climate contribute to VLF occurrence in the densely pop-
ulated EUS due to direct risk to human life and property
and widespread air quality impacts on dense population
areas associated with the wildfire smoke emissions (Yue
et al., 2013). Moreover, VLF often occur in unique habitat
for numerous threatened and endangered species in iso-
lated contiguous patches, such as the Okefenokee National
Wildlife Refuge (Eadie, 1984; Yin, 1993) in Georgia and
the Everglades National Park in Florida.

We used a satellite-derived fire perimeter database and
a set of multi-temporal weather and climate variables
to identify atmospheric factors that contribute to VLF
occurrence in the EUS from 1984 to 2010. First, we
examined whether there were differences between atmo-
spheric conditions at inter-annual, sub-seasonal and syn-
optic timescales for VLF and other large fires, and what
atmospheric timescales best distinguished VLF from other
large fires across different regions on the EUS. Sec-
ond, we used a climate-niche model spanning these three
timescales to predict the conditional occurrence of VLF.

2. Dataset and methods

Fire perimeters for all large fires (>202 ha) east of 100°W
in the contiguous United States (herein defined as EUS)
were acquired for 1984—-2010 from the Monitoring Trends
in Burn Severity (MTBS; www.mtbs.gov). For each fire,
we acquired the following attributes: (1) burned area for
each burn severity class as quantified by MTBS, (2) lat-
itude and longitude of the fire polygon centroid, and (3)
discovery date of the fire. Within each fire, the “‘unburned
to low’ class, which includes unburned islands within the
fire perimeter, was excluded to better characterize the true
area burned (Kolden et al., 2012). We defined VLF as the
largest 5% of fires in the MTBS database by area burned
(>~3000 ha). Large fires (hereafter LF) were defined as the
remaining 95% of fires in the MTBS data set. This thresh-
old is purely statistical in nature; however, results were not
sensitive to selecting a lower threshold (e.g. 90%). A total
of 231 VLF accounted for more than 52% of the total area
burned in the data set (Table 1).

Previous studies in the western United States have anal-
ysed macroscale climate—fire relationships using geopo-
litical boundaries, fire management units or ecoregion
scales (e.g. Westerling et al., 2003; Littell et al., 2009;
Abatzoglou and Kolden, 2013). However, Morton ef al.
(2013) noted that the seasonality of fires in the EUS
was very heterogeneous and that climate—fire relation-
ships were particularly difficult to generalize, given large
within-region climate variability and ecosystem diversity.
Coarser scale analyses may increase the signal-to-noise
ratio and heterogeneity in fuel types involved as compared
with more fine-scale analyses; however, finer-scale anal-
yses result in the statistical challenge of decreased sam-
ple size, particularly when dealing with rare events such
as VLE

We identified geographic hot-spots of VLF activity as
a means of defining regions of the EUS for subsequent
analysis. We clustered VLF centroid locations by apply-
ing the k-means clustering algorithm iteratively to define
k centroids while reducing sensitivity to the initial ran-
domly selected cluster centroid. The optimal classifica-
tion yielded six clusters (Figure 1) driven by similar cli-
mate anomalies (e.g. Trigo et al.,2013). Large fires located
within 500km of a VLF cluster were included in that
cluster (Figure 1). We excluded LF with discovery dates
within +7 days of a VLF discovery date for each cluster
to avoid confounding signals as VLF and LF often occur
synchronously within a region when conditions are prone
toa VLE

We used several variables operating at three distinct
and nearly orthogonal timescales to capture inter-annual,
sub-seasonal and synoptic variability associated with each
wildfire. While most prior climate—fire studies have used
variables such as temperature and precipitation given
their widespread availability, we focus on a set of inte-
grated variables that incorporate a consortium of surface
meteorological variables over distinct time periods. The
Palmer drought severity index (PDSI) was used to assess
low-frequency inter-annual moisture variability. The PDSI
was computed using temperature and precipitation data
from Parameter-Elevation Regressions on Independent
Slopes Model (PRISM, Daly et al., 2008) at 800-m resolu-
tion following the methods of Kangas and Brown (2007).
The Energy Release Component (ERC) of the US National
Fire Danger Rating System (NFDRS; Deeming et al.,
1977) was used to estimate the influence of sub-seasonal
timescales as it is a cumulative, hybrid weather-climate
metric that indicates potential heat energy released at the
flaming front. The Fosberg fire weather index (FFWI; Fos-
berg, 1978) was used to estimate daily synoptic timescales

Table 1. MTBS fire statistics for each region. The table provides the number of large fires (LF) and very large-fires (VLF) in each
cluster as well as the percent of area burned by VLF (ABVLF).

EUS Appalachians Northern Minnesota East coast Great Plains Texas—Louisiana Florida
#LF 3607 642 251 267 727 436 1384
#VLF 231 44 24 9 79 14 61
%ABVLF 52 41 60 47 46 17 44

© 2014 Royal Meteorological Society
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Figure 1. Spatio-temporal occurrences of VLF in each cluster. VLF clusters are computed from the k-means algorithm using longitudes and latitudes
of VLF. Colour dots depict VLF while grey dots indicate LF. The asterisk symbol within each cluster indicates VLF centroid. Both VLF and LF
located further than 500 km from the cluster centroid were excluded.

as it captures short-term impact of weather on wildfire
potential through wind events and heat waves (Fosberg,
1978; Cary et al., 2009). We considered FFWI, over other
fire danger metrics, to differentiate the relative influence of
sub-seasonal and synoptic timescales given the weak cor-
relation (R? = 0.06) between ERC and FFWI. Using other
variables to define sub-seasonal such as the Duff Moisture
Code and synoptic variability such as the Burning index
or F-index (Sharples et al., 2009) did not improve our
results. Daily ERC and FFWI values were computed from
the gridded surface meteorological dataset of Abatzoglou
(2013) at 4-km spatial and daily temporal resolution. To
account for the spatial heterogeneity in predictor variables
across the EUS, we converted ERC and PDSI into per-
centiles and daily FFWI into deseasonalized standardized
anomalies. Fire danger and PDSI data were extracted for
each fire by taking the grid cell collocated with each fire
centroid.

We examined lead-lag composites of the three variables
relative to the discovery dates for both VLF and LF. We
considered a 16-day window (5 days before to 10days
after the discovery date) for FFWI, a 61-day window
(30 days before to 30days after discovery date) for ERC
and a 21-month window (18 months before to 2 months
after discovery month) for PDSI, spanning the previous
growing season (May to September in the EUS) of any fire,
including fires that occurred at the end of the year. The
95% confidence intervals of the composite means were
computed using 1000 bootstrapped datasets.

On the basis of the aforementioned exploratory com-
posite analysis, we examined the climate-niche of VLF

© 2014 Royal Meteorological Society

across the three-dimensional climate space spanned by
PDSI, ERC and FFWI. The climate-niche considers data
from these three variables over a specific temporal win-
dow. It is challenging to define an optimal window over
which an individual variable may influence the likelihood
of a fire becoming a VLF particularly as some fires might
burn only over a few days, and others over a few month
period as seen during the Bugaboo Scrub fire in Georgia in
2007. To better constrain our choice of temporal window,
we used the Smartfire v2 database that provides estimates
of daily fire growth and emissions for MTBS fires from
2003 to 2010 (Raffuse et al., 2012). We further subsam-
pled from these fires by examining only fires where the
discovery date (defined by MTBS) and initial growth day
(defined by SmartFire v2) were less than 7 days apart. An
average of more than 80% of the total burned area for VLF
occurred over the first 10 days post-ignition (Figure 2). On
the basis of these results, we defined a three-dimensional
climate-niche by considering (1) inter-annual variability
represented by PDSI coincident to the month of fire, (2)
sub-seasonal variability, represented by ERC averaged
over a 21-day window, spanning 10 days before to 10 days
after the discovery date of the fire and (3) synoptic variabil-
ity represented by the maximum consecutive 3-day FFWI
over the 10days post-discovery. We used a 10-day win-
dow following the discovery date as a time period that
encapsulates a primary growth period of most large fires
(Figure 2).

We considered a climate-niche model demarcated by
thresholds for each variable. The forecasted distribution of
VLF is represented by a binary matrix of VLF forecasts

Int. J. Climatol. (2014)
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Figure 2. Ratio of final burned area for large-fires (dark grey) and

very large-fires (light grey) in the EUS from Smartfire v2 database

(2003-2010) as a function of the number of days post-ignition. The

confidence intervals of the composites are computed using 1000 boot-

strapped datasets. The box indicates the interquartile range of the com-

posites and the line with the circle shows the median obtained from the
bootstrapped datasets.

(VLF;,) in each climate-niche (i, j, k),

1
1o
(1)

where climate-niche demarcations are defined by the
thresholds i =0, 1, 2 standard deviations for deseasonal-
ized FFWI and j, k=0, 5, ..., 95 percentile for both ERC
and PDSI. We computed VLF probability given fire occur-
rence in each climate-niche using a Laplace’s correction.
This model was evaluated using the observed distribution
of VLF and LF. We assessed the skill of each climate-niche
model using the Heidke Skill Score (HSS) from a contin-
gency table of the joint frequency distributions of VLF;,
and VLF observations (Wilks, 2006), where a perfect fore-
cast has HSS=1, and a forecast with no skill or skill
below that of a random forecast has HSS =0 and HSS <0,
respectively. The climate-niche associated with the high-
est HSS (Sohn and Park, 2008) is reasoned to provide an
indication on the confluence of synoptic, sub-seasonal and
inter-annual variability associated with VLF occurrence.

VLFfCt (i’j’ k)

if FFWI > i, ERC > j, PDSI < k
otherwise

3. Results

VLF clustering yielded six regions across the EUS:
Appalachians, Northern Minnesota, East Coast, Great
Plains, Texas—Louisiana and Florida (Figure 1), generally
adhering to large-scale ecoregions of the EUS (e.g. Bailey
et al., 1994). The seasonal windows during which VLF
occurred were more constrained than for LF, suggest-
ing that seasonal factors facilitate VLF occurrence (not
shown). VLF typically occurred immediately following
the annual nadir in precipitation when fuels are driest
and most available. For example, nearly all VLF in the
Appalachians and most of the burned area occurred
during a relatively short period (~1 month) at the end of

© 2014 Royal Meteorological Society

October when the accumulation of fine fuels associated
with the autumn leaf fall combine with low precipitation
and relative humidity to support fire spread (Maingi and
Henry, 2007). Table 1 indicates that VLF accounted for
40-60% of the total area burned in all regions except
in Texas—Louisiana (~17%). Correlations between the
square root of VLF burned area and the square root of
total fire burned area at inter-annual timescales (computed
only when at least one VLF occurred in a given year)
were strongly correlated (R?=0.9 at the EUS scale), in
agreement with the findings of Stravos et al. (2014) in the
western United States.

An example of inter-annual, intra-seasonal and synop-
tic signals for the Bugaboo Scrub Fire that began in April
2007 and burned 81902 ha in Georgia and Florida is pro-
vided in Figure 3. The fire occurred during a long-term
drought (Figure 3(a)) and under exceptional prolonged
fire danger with ERC exceeding the historical 95th per-
centile for several weeks prior to and nearly 30days
following the fire discovery date (Figure 3(b)). Super-
posed on the long-term and intra-seasonal drought were
period of significant fire weather as viewed through FFWI
(Figure 3(c)). Large fire runs (Figure 3(b)) after fire dis-
covery coincided with high ERC but also consecutive
days with FFWI >2.5¢ when outflow from the subtrop-
ical storm Andrea brought high winds and low humidity
that likely facilitated fire spread (Wildfire Hazard Miti-
gation Annex). Although the signature of inter-annual to
synoptic factors varies across VLF, we hypothesize that
combinations of these factors create conditions conducive
for VLE.

Significantly higher fire danger and fire-weather con-
ditions and lower PDSI were observed during VLF
compared with LF when considering all fires in EUS
(Figure 4). PDSI was significantly lower than normal for
VLF, and lower than that of LF in all clusters except in
Texas—Louisiana. No significant longer-term antecedent
signals in PDSI evident in the previous growing sea-
son were observed in any of the clusters suggesting
fuel-limited climate—fire relationships seen in other
regions were not present. This is not surprising, given
the prevailing forest dominated biomes and high levels
of annual precipitation across the EUS outside of the
western Great Plains. Longer-term drought stress is thus
reasoned to be critical for depleting fuel moistures of large
diameter trees and lowering of the water table in swamp
forests and wetlands allowing these fuels to be receptive
to fire during protracted moisture deficits (Watts and
Kobziar, 2013).

ERC was significantly higher during VLF than LF
consistent with increased receptiveness of landscapes to
widespread fire activity when fuel moistures are low
(Figure 4, middle panels). However, relationships varied
at regional scales, with significantly higher ERC for VLF
than LF in the East Coast, Florida and Northern Minnesota
regions. The occurrence of prolonged and elevated ERC
might be expected with a blocking ridge aloft (Pollina
et al, 2013), or other persistent atmospheric regimes that
bring anomalously warm and dry conditions. Similarly,

Int. J. Climatol. (2014)
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Figure 3. (a) Inter-annual variability represented by PDSI, (b) sub-seasonal variability represented by ERC and (c) synoptic variability represented

by FFWI associated with the ‘Bugaboo Scrub Fire’ (renamed ‘Big Turnaround Complex’) in Georgia which started in 16 April 2007 and burned

81902 ha. Daily fire growth estimated from the SmartFire v2 data is shown by the solid line in (b). The vertical dashed line in each plot represents
the fire discovery date reported in MTBS.
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Figure 4. Left panels: lead/lag composites of PDSI relative to the discovery month of LF (dark grey) and VLF (light grey) at the EUS scale (first line)

and at the regional scale. Middle panels: same except for ERC (expressed as percentiles) except the lead/lag is relative to fire discovery day. Right

panels: same except for FFWI (expressed as standardized anomalies). The 95% confidence intervals of the composite means are computed using

1000 bootstrapped datasets. The envelope of confidence indicates the 2.5 and 97.5 percentile of the composite means obtained from the bootstrapped
datasets.
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Figure 5. Left panels: very large-fire probability given fire occurrences as a function of FFWI (>0, >1, >2), ERC and PDSI thresholds from 0 to 95

with a 5% increment. ERC (x-axis) was averaged over 21 days (10 days before to 10 days after the discovery date of fire), PDSI corresponds to PDSI

during the month of fire (y-axis) and FFWI corresponds to the maximum consecutive 3-day FFWI over 10 days post-discovery date. Right panels:

HSS optimization for VLF forecasts. Score is calculated for various thresholds of PDSI, ERC and FFWI as in the left panels. The colour bar refers
to both left and right panels.

FFWI was significantly higher than normal concurrent
with and in the week following the discovery date dur-
ing VLF (Figure 4, right panels). This is consistent with
other studies that showed that fire-weather conditions were
important for LF occurrences in United States (e.g. Brotak
and Reifsnyder, 1977).

Probabilities for three-dimensional climate-space for
VLF conditioned by fire occurrence for the EUS are shown
in Figure 5 (left panels). VLF probability increases in con-
junction with an increased FFWI and ERC and decreased
in PDSI, and these findings are generally robust at the
regional level (not shown). The HSS using the same
climate-space are displayed on Figure 5 (right panels).
Combining the three timescales results in appreciable skill,
especially during the confluence of low PDSI and high
ERC and FFWI. Note the lack of a single dimension or
variable that resolves VLF likelihood. For example, the
presence of critical fire-weather conditions in the absence
of seasonal or long-term drought yields nominal skill. The
climate-niche associated with the highest HSS at the EUS
scale was defined by PDSI <25th percentile, ERC >90th
percentile and FFWI >2¢ (Table 2). Similar relationships
were found at the regional scale, with the multivariate
approach including all variables resulting in increased
HSS values and an increase in the VLF probability given
fire occurrence for all regions except in Texas—Louisiana.
This simple binary forecast based on three timescales
relative to the fire event scale shows that alignment of
three time scales yields optimal forecast skill in EUS and
demonstrates the uniqueness of the weather-climate con-
tinuum associated with VLF.

© 2014 Royal Meteorological Society

Table 2. Combination of synoptic (FFWI), sub-seasonal (ERC)

and inter-annual (PDSI) variables thresholds associated with the

highest HSS. All indices are expressed as percentiles except

FFWI that is expressed as standardized anomalies. A cell is blank

when the variable does not increase the HSS. The last column

indicates the VLF probability given fire occurrence under the
climatic conditions defined by the thresholds.

Region FFWI ERC PDSI HSS VLF:total
fires
Eastern United States  >2 >85 <25 0.17 0.27
Appalachians >2 >80 <30 0.30 0.33
Northern Minnesota >2 >05 <40 0.38 0.45
East Coast >2 >85 <35 0.26 0.27
Great Plains >2 >80 <40 0.08 0.23
Texas—Louisiana >2 >85 0.15 0.03
Florida >2 >85 <20 0.27 0.58

4. Conclusions

VLF in the EUS generally occur during long-term
drought, and more pronounced sub-seasonal drought and
fire-weather conditions than other LF, consistent with the
analysis of Stravos et al. (2014) for the western United
States. These results reinforce the notion that weather
and climate play important roles in the occurrence of
VLF and may supersede the capacity of fire suppression
to control fire growth under such conditions. Further
studies that can better elucidate the impact of daily or
sub-daily weather conditions on daily fire growth of VLF
are needed to refine such analysis, therein requiring high
quality fire progression maps estimated from satellites

Int. J. Climatol. (2014)
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(e.g. Parks, 2014). While our study explicitly focused on
atmospheric influences, other factors such as road or popu-
lation density, multiple ignitions coupled with inadequate
suppression resources, or fire-regimes associated with
stand replacement vegetation are likely important factors
that explain why some fires became VLF. Thus, while
the alignment of inter-annual, intra-seasonal and synoptic
atmospheric processes help enable VLF occurrence, they
are not a sufficient or necessary condition for VLF.

The uniqueness of the climate-niche conducive to VLF
occurrence may refine seasonal fire prediction efforts.
For example, understanding how large-scale climate vari-
ability such as El-Nifio Southern Oscillation (Beckage
et al., 2003) impacts both sub-seasonal fire danger and
critical fire-weather events may improve seasonal VLF
forecasts. The superimposition of synoptic, sub-seasonal
and inter-annual forcing should also be considered in
long-term climate change projections as changes in the
occurrence of long-term drought, sub-seasonal fuel mois-
ture and critical fire-weather conditions under enhanced
greenhouse forcing could alter the frequency and geo-
graphic distribution of VLF.
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